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ABSTRACT

Penetration testing is required for National Computer Security Center (NCSC) security evaluations of
systems and products for the B2, B3, and A1 class ratings of the Trusted Computer System Evaluation
Criteria (TCSEC). This guideline is a definitive statement of what constitutes good penetration testing,
where it fits in the DOD Standard Software Engineering and TCSEC life cycles, and how it is done
according to the best available practice, the Flaw Hypothesis Methodology (FHM). A review of the
TCSEC assurance products is presented, as they form evidence of a chain of reasoning on the compliance
of the target system to a given evaluation class, and against which penetration testing is mounted. Flaws
in the evidence are the products of penetration testing. To exemplify the methodology, results of past
experience are provided throughout. The guideline concludes with a short review of new R&D
approaches broadly considered penetration testing. An extensive bibliography is provided of work in the
field, as are a set of Appendices that provide practical management guidance in planning and performing
penetration testing.
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FOREWORD

This document is intended for Executives, Strategic Planners, Program Managers, Technical Directors,
Engineers, and interdisciplinary folks wishing to acquire a view of Computer Security, an increasingly
complex set of requirements in the information systems business. It is one guideline on penetration testing
in a Navy handbook series on security certification of computer systems to operate in a multi-level secure
(MLS) manner according to current DoD security standards, The Rainbow Series.
  
The Rainbow Series of technical security guidelines are produced by the NCSC of the  National Security
Agency (NSA). Collectively, the documents consolidate knowledge about the degree of trust one can
place in a computer system to protect sensitive information, and organizes this knowledge into useable
criteria for evaluating a computer system's ability to resist unauthorized use. The landmark 1983
document, "The Department of Defense Trusted Computer System Evaluation Criteria, TCSEC," (CSC-
STD-001-83), replaced in December 1985 as the DoD security standard DoD-5200.28-STD, is the
"Orange Book," the color of the covers for the first book in the Rainbow Series. The TCSEC established
for the first time a rating scale for secure operating systems, from minimal (C1) to high (A1) trust, based
on security policy, protection features mechanisms, and assurance measures. Subsequent publications in
the Rainbow Series have amplified the requirements of the TCSEC, and extended its application for
networks, database management systems, and distributed applications. The Rainbow Series of knowledge
and guidance has become influential in shaping domestic military, government, and commercial
development, procurement, and  products. It has also stimulated international security standards in
Canada, England, France, Germany, and the Netherlands.
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1.

1. INTRODUCTION

A security threat exists when there is the opportunity, motivation, and technical means to attack: the when,
why, and how. Penetration testing deals only with the "how" dimension of threats. It is a requirement for
high-rated secure systems, ratings above B1 of the Secure Computer System Trusted Evaluation Criteria
(TCSEC), that penetration testing be completed without discovery of security flaws in the evaluated
product, as part of a product or system evaluation [DOD85, NCSC88, NCSC92].  Unlike security
functional testing, which demonstrates correct behavior of the product's advertized security controls,
penetration testing is a form of stress testing, which exposes weaknesses, i.e., flaws, in the Trusted
Computing Base (TCB). 

Of all the security assurance methods -- including layered design, proof of correctness, software
engineering environments (SEE) -- only penetration testing is holistic in its flaw assessment. It finds flaws
in all the TCB evidence: policy, specification, architecture, assumptions, initial conditions,
implementation, software, hardware, human interfaces, configuration control, operation, product
distribution, and documentation. It is a valued assurance assessment tool.   

Among the important lessons presented in this guideline are the following:

o Testing is a posteriori (analysis) not an a priori (design) assurance method.
o Penetration testing is best at finding flaws not booty.
o A flaw is an unspecified exploitable capability in B2, B3, and A1 systems.
o Penetration testing is holistic; it finds flaws in policy, spec, code, operations.
o Good planning is needed: goals, resources, skills, TCB evidence, schedule.
o Penetration testing begins after the system is under configuration control.
o Residual flaws are those remaining after management approval to operate.
o Flaw Hypothesis Methodology (FHM) is a widely used penetration approach.
o FHM: Flaw Generation, Confirmation, Generalization, & Elimination stages.
o 20 years of experience shows C1-B1 systems have weak resistance to attack.

o Formal design methods are a new form of a priori penetration analysis.
o A model Work Breakdown Structure (WBS) for penetration testing is given. 

This guideline is organized in five main parts, plus Appendices and Reference sections. These sections
define what good penetration testing is all about (Section 1), where it fits in the product life cycle (Section
2), how it is done (Section 3), some results from past experience (Section 4), and future frontiers (Section
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      Galileo's famous experiment of dropping different weight balls from the Tower of Pisa to prove that all objects fall at the same1

rate, was a Gedanken experiment. He argued logically that, if an unsymmetric dumbbell-shaped body split while falling, the heavier
piece would not spontaneously increase in falling speed since there were no new forces acting upon it.  Gravity would act alike on
both pieces, and by extension,  on all  free falling bodies.

2

5). The guideline addresses two principal audiences, managers, and technical evaluators. Managers will
gain much from reading Sections 1, 2, 5, and 6. Evaluators should read the whole document, but focus
on the "how to" Sections 3, 4, and 6.

1.1 What Is Penetration Testing? 

Penetration testing is one method of evaluating the security strength of a Trusted Computing Base (TCB).
It is a pseudo-enemy attack by a friendly evaluation team on a computer system of interest to discover
ways to breach the system's security controls, to penetrate the security perimeter of protection to obtain
sensitive information, to obtain unauthorized services, or to cause damage to the system that denies
service to legitimate users. It is a novel form of testing, which attempts to discover features, functions,
and capabilities of the system that are unspecified and often unknown to its developers and users. It finds
capabilities that can be exploited to breach security. These extra capabilities are "flaws" in the
specifications, design, implementation, operation, or documentation of the system. Penetration testing
finds security flaws and complements security functional testing, which confirms the correct behavior of
the specified security features, functions, and capabilities. Because it tests "what is not there," i.e., there
are no specifications  for flaws, penetration testing develops novel ways of preparing test cases.
Essentially, hypothetical specifications are prepared from which tests are derived. However, most tests
are paper and pencil "thought" experiments, like German Gedanken experiments in early 17th and 18th
Century physics. Some tests are live exercises similar to functional testing. The penetration testing1

described here is largely based on the author's Flaw Hypothesis Methodology (FHM), the earliest and
most widely used approach [WEIS73].

Traditional methods of function testing and repair are poor strategies for gaining assurance of TCBs. The
"hack and patch" approach to assure secure systems is a losing countermeasure method because the
hacker need find only one flaw, whereas the vendor must fix all the flaws.  FHM penetration testing is not
hack-and-patch, but a methodical, holistic method to test the complete, integrated, operational TCB --
hardware, firmware, software, and human interfaces -- and expose as many flaws as established as a test
goal, (see Section 3.2.2). It is an empirical review of design coherence from abstract design theory
through implementation to operational practice. It is peer review of all the TCB assurance evidence. It
is one of many novel methods of satisfying assurance requirements. It works. It finds flaws. 

1.2 What Is The Purpose/Goal Of Penetration Testing?

There are many possible goals of penetration testing, which must be clearly stated in test plans before
testing begins, else resources will be squandered. The primary goal is to satisfy TCSEC requirements for
B2, B3, or A1 assurance. Penetration testing provides independent validation of security trustworthiness
of a system when performed by an impartial, competent evaluation team. Penetration testing is a useful
vendor design and development tool, particularly in anticipation of product submission for evaluation per
TCSEC. Many other goals have been satisfied by penetration testing. It has been used as "shock therapy"
to convince skeptical managers of their vulnerability to attack threats. It has been used in University
teaching of systems/security engineering [HEBB80, WILK81]. It was important in identification of
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generic weaknesses of a system architecture that lead to improved designs [ATTA76, BELA74,
MCPH74, SPAF89]. 

Penetration testing is not a game between employees and management, students and teachers, citizens and
government, though such examples by hackers are rampant in the popular press. Penetration testing
should not be part of Navy System Acceptance Tests. Acceptance Tests show that a product meets its
specifications. Security functional testing can be included in acceptance tests. But penetration testing is
an open ended test without specifications. No sensible, credible vendor could bid on a task without end.
Penetration testing is inappropriate as a coercive force on vendors. 

Penetration testing can not prove or even demonstrate that a system is flawless. It is an empirical method
and unable to say much about undiscovered flaws. It is as thorough and comprehensive as the talent,
knowledge, skill, and diligence of the team members. It can place a reasonable bound on the knowledge
and experience required for a penetrator to succeed. That knowledge applied to countermeasures, can
restrict the penetrator's access below this bound, and therefore, give a degree of assurance to operate the
system securely.  

1.3 What Makes A Good Penetration Test?

A consistent test philosophy is basic to good penetration testing. A philosophy that focuses efforts on
finding flaws and not on finding booty or other hidden targets adds professionalism to the tests by placing
a premium on thinking instead of scavenger-hunt searches. Flaws are found when the system protection
mechanisms are breached. B2, B3, and A1 candidate systems must employ a reference validation
mechanism (RVM) for satisfactory TCB protection. A TCB is an amalgam of hardware, software,
facilities, procedures, and human actions, which collectively provide the RVM security enforcement
mechanism of the Reference Monitor [ANDE72]. 

A Reference Monitor mediates every access to sensitive programs and data (i.e., security Objects) by
users and their programs (i.e., security Subjects). It is the security policy mechanism equivalent of
abstract data-type managers or type enforcers in strongly-typed programming languages such as Modula,
and Ada. The Reference Monitor software is placed in its own execution domain, the privileged
supervisor state of the hardware, to provide tamper resistance from untrusted user/application code (i.e.,
untrusted Subjects). The Reference Monitor software is often called the "Security Kernel," and is
complemented with trusted processes (i.e., trusted Subjects) performing authorized policy violations,
memory sanitization or label creation, for example.  The Reference Monitor needs to be small and simple
in its architecture to allow human evaluation for
correctness and for assurance that only the authorized security policy is enforced. The resistance  to
penetration testing of this triad of policy, mechanism, and assurance of the Reference Monitor is the basis
for the high rating of the TCB. A comprehensive test of the triad is fundamental to good penetration
testing theory.

A comprehensive penetration test plan improves the odds for achieving good penetration testing. A
penetration test plan establishes the ground rules, limits and scope of the testing. The test team identifies
what is the "object" being tested and when the testing is complete. For a commercial product, penetration
test planning can begin whenever the vendor and the Navy agree, and the TCSEC evidence package is
ready.  For a system in development, penetration testing is a part of the overall security plan, normally
prepared in the early phase of the program, e.g., by System Requirements Review (SRR). Since the
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TCSEC evidence package will not be complete until after Formal Qualification Testing (FQT),
penetration testing by the Navy evaluators would begin after FQT.  Informal and optional penetration
testing by the vendor could begin anytime there is solid design evidence. Evidence consists of
architectural analysis of RVM at Preliminary Design Review (PDR), flaw generation at Critical Design
Review (CDR), and code testing during System Integration and Test (PQT/FQT). (These phases and
products are presented in detail in Section 2.) The Navy should cooperate with the vendor during such
optional penetration testing for the reasons noted above. It will also make the formal penetration testing
run more smoothly. 

A key requirement for the penetration test plan is defining the posture of the simulated attacker. Is the
evaluator to play the role of an insider or an external unauthorized user? For B2 and higher systems, the
worst-case assumption is hostile attack from authorized users inside the security perimeter who exceed
their authorization. For authoritative attack simulation the penetration team must be highly qualified and
professional as discussed in Section 1.4.  Lastly, the plan should define the limits of the penetration test;
when is the test complete? Normally, the open-ended nature of flaw searching concludes when resources
or people are exhausted. However, a time limit can also be applied. These and many other questions about
penetration testing procedures and tasks are covered in later sections, particularly Sections 2 and 3.
 

1.4 What Makes A Good Tester?

Good people in an integrated team make for good penetration testing. Desirable characteristics for the
team include experienced penetration testers, people knowledgeable of the target system, creative folks
with bizarre ideas on associations of software modules, software development methods and tools,
operating systems' control structure, resource allocation, input/output,  human interfaces, and memory
management.  Successful testers are individuals who are detail oriented, careful thinkers, and persistent.
A key requirement is for ethical, mature professionals who can protect proprietary, sensitive vendor data,
particularly residual flaws in the system.

It is important that penetration testing employ evaluators who have the highest ethics since they will be
given access to proprietary data and uncover extremely sensitive system vulnerabilities. Penetration
testers must be non-antagonistic toward the vendor to encourage cooperation. They must protect
proprietary information and vendor product investment so their testing can yield an improved security
product. Test results and  discovered flaws during penetration testing must be kept strictly proprietary and
not made public by the test team. 

Evaluator-developer cooperation is a prerequisite for good penetration testing. The vendor must be
assured of the professionalism of the testing staff and the protection of his proprietary data rights. Most
vendors have considerable investment in their products, are quite suspicious of the motives of the test
team, and are anxious about the results of the penetration testing, which if leaked could kill a product. A
good penetration team will keep the vendor apprised of the team's activities with frequent progress
meetings and results feedback. Good vendor rapport is built by adding vendor personnel to the
penetration testing team, with prime responsibility given for guiding the team through TCSEC evidence
of the RVM, and for training briefings and clarifications of the RVM design.  Early cross training of the
penetration team and the vendor's staff is an excellent way to build cooperation, knowledge, and trust. The
penetration team teaches the vendor about the TCSEC assurance evidence requirements and the FHM.
The vendor staff teaches the penetration team about the target product, its development tools, test cases,
and internals documentation.  Also, vendor-provided equipment, software, and test tools demonstrates
the vendor's commitment to the evaluation, further building a cooperative spirit. Never allow antagonism
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between the vendor and team members to develop. Antagonism is difficult to avoid since vendor and
evaluator have competing goals, finding zero defects versus finding flaws, respectively. Also, the vendor
must provide a "frozen" copy of the system being tested which agrees with the product under
configuration control. The vendor must not "fix" flaws in the test copy as that would invalidate
configuration controlled assurance evidence.

Penetration testing is exhausting work. It is careful, detailed "destructive" analysis of thousands of lines
of complex source code in a short period of time. The work burns out professionals rapidly. It is best for
penetration team members to rotate to other constructive activities after about six months of testing. Fresh
evaluators should be brought in at the start. Penetration testing is an excellent systems training vehicle
when junior members are mixed with seasoned professionals [HEBB80], and new folks can be motivated
to participate for this experience.

1.5 Who Is Responsible For Penetration Testing?

The simple answer is, the evaluators do the formal penetration testing [RUB86]. Standard commercial-
off-the-shelf (COTS) products, are submitted to the National Computer Security Center (NCSC) for
evaluation and publication on the Evaluated Products List (EPL). In that case NCSC performs the
penetration testing. 

The complex answer is, penetration testing will be performed by all parties with a vested interest. A
COTS product will be penetration tested during product development and assurance evidence preparation
by its vendor for self appraisal well before submission to NCSC for EPL consideration.  For custom
systems contracted by the Navy, the Navy will define who is responsible for penetration testing as part
of the contract and the system security accreditation task. The accreditation will involve the contractor,
the Navy end user, and the Navy Designated Approving Authority (DAA), who has ultimate
responsibility for residual risks in a given operational environment.

Responsibility for penetration testing gets even muddier for the trusted application component developer,
e.g., a secure database management system (DBMS) vendor, a new player on the security scene. In theory
the application developer prepares separate component assurance evidence, which shows how the
application TCB is a component TCB subset of the system TCB. It also shows how the component TCB
subset meets the criteria of Evaluation By Parts (EBP) of the distributed Reference Monitor [TDI91]. It
is clear that the component can not operate without its sibling components, therefore, penetration testing
must involve all the components of the full TCB. However, if all the other components are rated
(previously penetration tested), is the whole retested, or just the new component, its interfaces, and its
environment assumptions?  EBP theory is new and untried at this writing. Component vendor assurance
evidence must claim success of the integration. The evaluator's predicament and answer to the question
of retesting the whole TCB, awaits future practice and experience. 
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2.

2. PENETRATION TESTING IN THE DEVELOPMENT
LIFE CYCLE

Penetration testing occurs late in the development life cycle when there is sufficient product to be tested.
For custom DOD systems, the life cycle is based on MIL-Standards. DOD-STD-2167A is the standard
methodology for military system software development and the life cycle model used in this handbook
[DOD88]. DOD 5200.28-STD, the Trusted Computer System Evaluation Criteria (TCSEC), is the
independent regulation guiding the evaluation of systems for trust [DOD85]. These two methodologies
are not harmonized to the consternation of all security and program managers. Some work has been done
to address the blending of these two standards, particularly in the Strategic Defense Initiative
Organization (SDIO) programs [RADC90, GE91]. It is beyond the scope of this guideline to do more
than comment on this harmonization, however, penetration testing is consistently treated as "testing" in
the later stages of both development methods.

DOD-STD-2167A describes the development life cycle as the series of major processes, reviews, and
deliverable products shown in Table 2-1.
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Table 2-1.        DOD-STD-2167A Summary

Process Review Product

System Requirements Analysis SRR SSS

Software Requirements Analysis SDR SRS, SDP

 Preliminary Design PDR SDD, STP

 Detailed Design CDR SDD, STD

 Coding and Computer Software 
  Unit (CSU) Testing

CSU Code

 Computer Software Component
  (CSC) Integration and Testing

TRR CSC, STD

 Computer Software Configuration
  Item (CSCI) Testing

CSCI Tests CSCI, STR

System Integration and Testing PCA, FCA
PQT, FQT

SPS, O&S

Where:
 SRR = System Requirements Review
 SSS  = System Subsystem Spec
 SDR = System Design Review
 SRS = Software Requirements Spec     
SDP  = Software Development Plan
 PDR  = Preliminary Design Review
 SDD = Software Design Document
 STP  = Software Test Plan

CDR =Critical Design Review
STD = Software Test Descriptions
TRR = Test Readiness Review
PCA = Physical Configuration Audit
FCA = Functional Configuration Audit
STR = Software Test Results
SPS = Software Product Spec
O&S = Operation and Support Documents
PQT = Preliminary Qualification Tests
FQT = Final Qualification/Acceptance Tests 

  

The TCSEC is not organized around development process as is DOD-2167A. Rather it is a set of criteria,
design principles, and development practices for achieving evidence of trust. Table 2-2 lists the TCSEC
processes and/or products.
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Table 2-2.        DOD 5200.28-STD Summary

Principle/Process Product

Philosophy of Protection Concept of Operation (CONOPS), 
Security Architecture, Security Policy

Policy Modeling Formal Policy Model

Formal Design Formal Top Level Spec (FTLS), A1 Only

System Design Descriptive Top Level Spec (DTLS)

Model Correspondence Formal Policy Model to FTLS Map, A1 Only

TCB Implementation Code

Code Correspondence DTLS/(FTLS A1) Map to TCB

Covert Channel Analysis (CCA) Document Channels and Their Disposition

Functional Testing TCB Test Plan, Procedures, Results

Security Testing TCB Penetration Test Plan, Procedures, Results

Evidence Documentation Above plus: Trusted Facility Manual (TFM),
Security Features User's Guide (SFUG),
Configuration Management Plan (CMP)

2.1 How Does Penetration Testing Relate To Other Life Cycle Products?

Penetration testing is one part of security testing in the TCSEC. Security testing will be performed by the
developers at CSCI Testing, when the code and documentation are frozen and placed under Configuration
Management. Results can be part of the STR, probably a subsidiary document or appendix because of
the sensitivity and/or classification of the results, i.e., vulnerabilities.  Plans for penetration testing are
documented in the STP and reviewed at the PDR and CDR. 

When penetration testing occurs for custom systems (i. e., non COTS) is controversial. From the vendors
view, penetration testing is performed by the evaluators after the system is accepted (FQT) and before
it goes operational as part of accreditation testing. The government wishes penetration testing before or
as part of acceptance testing. The issues deal with compliance responsibility, money, and security.  If
penetration testing is performed after acceptance testing and security flaws are found, is the vendor
obligated to fix the flaws? Who pays for the repairs if they are significant? Furthermore, the system can
not be used operationally until the accreditation tests are complete, which could be significantly delayed
by the repairs. The government believes security accreditation is a system requirement the vendor
embraces when he bids and wins a program, similar to performance, schedule, and pricing requirements.
The vendor has equally valid arguments. Unlike performance, schedule, and pricing requirements, the
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solution of which he controls,  penetration testing is performed by the government, and is an open ended
task.  Often the vendor has a "marching army" of its staff awaiting acceptance test completion. It is
difficult for the vendor to price and schedule the tests and the possible repairs.   Penetration testing before
acceptance  would be expensive for the vendor and the  government.   Resolution of this dilemma is
beyond this guideline.  Recent examples have had before testing on cost-plus contracts and after testing
on fixed-price contracts.

Two popular models of software development are the "Waterfall" method [ROYCE70], and the "Spiral"
method [BOEHM86]. They deal with distinct phases for requirements, design, specification,
implementation, test, integration, and operation as described in DOD-2167A.  Whereas the Waterfall
model sees these as serial phases, the Spiral model focuses on risk reduction by building iterative
prototypes, where each prototype shakes out the requirements, specifications, and performance
weaknesses. By its nature and prerequisites, penetration testing comes so late in the life cycle that the
significant flaws it uncovers have a major ripple impact on the development process. Other than
implementation flaws, fixing flaws requires repair of specs (SSS, SRS, SDD, SPS), code (CSU, CSC,
CSCI), documentation (SDP, STP, STD, SPS), and the extensive TCSEC assurance evidence: code-to-
specification and code-to-model correspondences, covert channel analysis, code proofs (A1 systems),
regression tests and repeat security tests (STD, STR). The Spiral model is a better fit for high TCSEC
class secure systems as the iteration allows feedback for correcting the ripple effect of flaws discovered
on earlier iterations. Three iterative loops of the specification-code-test spiral have been typical
experience with development of such systems before they are ready for security evaluation. 

Figure 2-1 reflects a  relationship between DOD-2167A and TCSEC processes and products as
expressed in the SDI work for Rome Labs [RADC90]. It is representative of similar experience on other
programs, but not without controversy regarding when TCSEC evidence is generated.  However,  the
SDI-suggested correspondence of processes and products of the standards are shown as typical of
software trust engineering to exemplify the relationship necessary for practical application of the two
methods. Feedback loops of the Spiral method are not show to simplify the presentation.

DOD-5200.28-STD (TCSEC)  Methodology

Produc
t

   & 
 Events

Protection
Philosophy

Model FTLS DTLS Correspon-
dences

Analyses

CCA Function
Testing

Security
Tests      

Security 
Evidence 

Produc
t

SSS SRS SDD,
STP 

STP Code Code STD STR O&S

 Events SRR SDR PDR CDR Coding & 
CSU Tests

TRR CSCI
Tests

PCA,
FCA

DOD-STD-2167A  Methodology

Figure 2-1.        DOD-STD-2167A and DOD 5200.28-STD Correspondence
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Vendors of commercial products intended for evaluation and addition to the Evaluated Products List
(EPL) follow a development process analogous to that of DOD-2167A. The vendor may conduct
penetration tests as part of his development. Government evaluators of a product intended for the EPL
conduct penetration testing after the product has completed the vendor's FQT. 

 
2.2 What Information Is Used To Develop Penetration Tests?

Product test cases are prepared from the product's functional specifications. In penetration testing we are
looking for deviations from functional specifications, for capabilities not specified, i.e., for (dis)functional
specifications of flaws. In the final analysis it is the code that captures the requirements, specifications,
and design, and the code actually tested on the operational hardware. However, there are no
(dis)functional specifications for the penetration tests; equivalent "specifications" must be developed as
part of the penetration test plan. TCSEC B2 and better systems require their developers to produce a
coherent collection of information on the trustworthiness of the system that will convince the evaluators
to grant the highest rating class. The accreditation process is a social process judging the adequacy of the
system for the application. The social process has analogy to a jury trial with the user agent (e.g.,
procurement) acting as the prosecution lawyer, (We'll uncover any product weaknesses.), the vendor
acting as the defense lawyer, (Product meets all the buyer's security requirements.), the evaluators playing
the jury role, (The evidence shows ...) , and the DAA being the ultimate judge, (Product security strength
is/is not acceptable for the application threat environment). For such a model of the accreditation process,
penetration testing becomes a part of the "evidence" of the system's security, and also a consumer of such
evidence in generating the (dis)functional specifications for penetration testing.

2.2.1 RVM Chain Of Reasoning

The TCB is the reference validation mechanism (RVM) that mediates all accesses by Subjects to Objects.
The basis of that mediation is defined as the Security Policy, the permission rules for access. Rules can
be as simple as a list of users allowed access, attached to the object at the discretion of the owner, i.e.,
Discretionary Access Control (DAC). Or the rules can be based on management mandated sensitivity
labels, where Clearance must dominate Classification labels, i.e., Mandatory Access Control (MAC). The
Bell-LaPadula policy is the most widely cited in DOD applications [BELL76]. The Security Policy is a
most critical piece of evidence for penetration testing. It defines success. When a flaw is confirmed it is
because of a failure of policy  or of policy enforcement.

Hardware provides the means to isolate the TCB from tampering by non-TCB (i.e. untrusted) user code.
The correct use of this hardware by the TCB during service procedure calls, I/O and clock interrupts,
error handling routines, start up and shutdown is part of the security architecture evidence. Security
architecture should clearly show the TCB boundary, also called the "security perimeter" between trusted
and untrusted domains. The security architecture is another key piece of evidence, and is penetration
tested for correct design, implementation, and operation. Furthermore, the security architecture must show
that the TCB is always invoked and never bypassed for any reason, else it is unable to provide self-
protection against unauthorized modification, or to control access per the security policy. 

Protection is achieved if the facility is closed, the hardware remains unbroken, operators follow correct
procedures, the TCB is unflawed, the security architecture is sound, and the security policy is appropriate
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for the environment and correctly implemented. The objective of security assurance is to show security
enforcement, i.e., trust, and dependence of one piece of evidence on another in a coherent chain. Coherent
in both the mathematical sense of logical implication, and in the social sense of being clear to deliberative
bodies of evaluators and accreditors. When a flaw is detected in the chain of evidence, it is a case of the
proverbial "For want of a nail ..."  Penetration testing examines the evidence for "missing nails." 

2.2.2 Concept of Operations (CONOPS)

Security is a "weak link phenomenon," in which many trusted parts play a role in the protection
philosophy of the system. Security is only as good as its weakest part. A global  system view of how the
different parts play together is captured in the Concept of Operations (CONOPS) document. CONOPS
provides a macro view of the roles of trusted parts of the TCB under different user and operational
scenarios. It is not a complete description or specification for any given part, but is a complete description
of the whole system and the interdependence and interplay of the parts. It is an analysis technique and a
pedagogic device for surfacing incomplete system design and component  interfaces. 

Generation of the CONOPS begins with a time line analysis of system security operations -- boot load,
system security officer (SSO) login, SSO loads and updates subject permissions and object restrictions
(e.g., access control lists, ACLs, security labels, read/write/append rules), SSO audit analysis,  SSO alarm
response, and  SSO system shutdown. Superimposed on this time line are typical user security actions --
login, program execution, file access, device and I/O access, mail and communications interaction, and
logout. Further superimposed on the system time line are the actions of special users, e.g., system
administrators, maintenance and repair, database administrators, system and network managers, etc. Each
has security-relevant actions that must be part of the CONOPS.  Each of these human actions triggers
internal system security enforcement modules. These are identified on the time line with their necessary
data flow, databases, and  hardware.  Lastly, unscheduled events are listed and considered to occur at the
worst of times for the system.  Error conditions, equipment failure, communications breakdown, corrupted
data, overloads, etc.  are mapped  to various time line events.  Collectively, these events describe the
CONOPS, the  theoretical behavior of the security elements of the system that counter the expected  threat
scenarios.

The CONOPS is prepared early in the system  development life cycle, usually by SDR or PDR. It grows
in importance as the system is implemented and is a key document in the development of security  and
acceptance tests. It contributes significantly to defining the roles of all the system  users, the labels of data,
access rules, and the TFM and SFUG evidence documents.  It is a necessary piece of evidence for
assessing trust.

2.2.3 All The B2, B3, Or A1 Evidence

Table 2-2 gives a comprehensive list of the key security principles of the TCSEC, their associated
processes when applicable, and the evidence products that result. Section 2.2.1 describes evidence
common to the DoD-STD-2167A and the TCSEC.  This section completes the review of evidence
products unique to the TCSEC.

Security policy, CONOPS, security architecture, and security policy model collectively contain the
security requirements for the system. The security policy model maps the security policy rules into the
system subjects, objects, access rules, and security functionality as seen by the user and his application
programs at the security perimeter. The security policy abstraction is made more concrete in the security
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policy model. Files, memory segments, I/O ports are identified objects, and logon/logoff, create/delete
objects, read/print to ports are subjects, probably trusted processes of the TCB. The security policy model
is the beginning of the formal system design process and is captured in a Formal Top Level Specification
(FTLS) for A1 class systems by PDR. The FTLS is often expressed in one of the formal specification
languages -- Enhanced Hierarchical Development Methodology, Gypsy, and  Ina Jo [KEMM86,
NCSC88]. For B2 and B3 systems, which do not require an FTLS, the preliminary design is captured in
a Detailed Top Level Specification (DTLS) and frozen by CDR. 

A variety of security analyses in the TCB evidence collection provide the assurance that the design can
resist attack. Foremost of these is the security architecture design analysis discussed above. Less well
known are the various correspondence implementation analyses. These show the consistency between
the implementation stages: requirements, specification and code. These analyses map the correspondence
between the early and later development products; for example, between the FTLS and the code. The
mapping is two way -- specification-to-code, and code-to-specification -- because, if there is specification
without corresponding code, we have an incomplete implementation of the requirements or design and,
if  there is code without corresponding spec, we have possible malicious code, e.g., Trap Door, Trojan
Horse, Virus, or Worm. There is a significant amount of code in the TCB that is not represented in the
FTLS or DTLS because it is not part of the visible security interface, the security perimeter. The code-to-
specification correspondence analysis must account for all such code. The A1 formal proofs are a
mathematical demonstration of the correspondence of the FTLS to the security policy model, i.e., the
correctness criteria and initial conditions.

Covert channel analysis (CCA) seeks out TCB mechanisms that may be shared among untrusted security
partitions. Examples of shared mechanisms include common equipment, status variables, buffers,
scheduling queues, and semaphores. These shared mechanisms may be used as covert "state" variables
and modulated to transmit slow levels of unauthorized covert communications. The penetration testing
team uses the vendor's CCA evidence to look for flaws: channels not closed or inadequately repaired, and
new channels.  Some tools exist that help in CCA of the FTLS and can be used by the evaluators
[KEMM83].

Security functional test plans, procedures, and results are useful TCB evidence for penetration testing
perusal and for reuse in the actual penetration tests. 

2.3 What Happens To The Results Of Penetration Testing?

Self examination is the primary purpose for the vendor performing a penetration test. It gives him an
assessment of a probable TCSEC rating class on the Evaluated Products List (EPL). The results are
proprietary and are used to fix problems. In some cases the flaws found during penetration testing of an
earlier product can lead to significant architectural changes in future versions of the product to achieve
a higher evaluation class. 

Penetration testing can be a research tool to better  understand generic design flaws and possible
countermeasures. The Multics experience is a case in point [KARG74].

Penetration testing performed by the government evaluators produces lists of residual flaws, a description
of the security strengths, and an EPL evaluation class. The detailed results are shared with the vendor and
kept proprietary.  A joint vendor and evaluator public bulletin is released on the EPL rating achieved. The
summarized results, called a "security profile," are used by the end-user senior management to assess the
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risk of using the evaluated system in a given environment. If the residual flaws can not be repaired, or can
not be fixed in a timely manner, supplemental protection may be recommended, e.g., improved physical
protection, or higher user clearances levels. The risk management recommendation is presented to the
Designated Approving Authority (DAA) for approval to operate the system with its residual flaws and
added protection for the specific application environment.
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3.

3. PERFORMING PENETRATION TESTING 

There can be many goals for penetration testing, ranging from security assurance [DOD85] to systems
training [HEBB80, WILK81].  For this guideline, penetration testing focuses only on the goal of
generating sufficient evidence of flawlessness to help obtain product certification to operate at a B2, B3,
or A1 security assurance level. 

 
3.1 For What Are You Looking?

We are looking for flaws not exploiting flaws to find dummy target files. An anecdote characterizes the
difference between seeking flaws and booty. A penetration test at a highly sensitive agency in the early
80's, had as its objective accessing a dummy target file on a system considered by the agency to be well
protected. After considerable preparation, the penetration team was allowed physical and terminal access
to the system and given a week to do its testing. Within the first hour, expected flaws were found, "trap
door" code was planted to bypass access controls, and searches were begun for the dummy file. A
runaway printing loop in the target computer blocked use of the test terminal because the bypass patch
the team inserted in the TCB was off by a few bytes. The print loop made the activities visible to the
agency watchdog, who stood in awe as another terminal was used to patch the patch and stop the runaway
print terminal. All this patching was performed on-line, bypassing the system security access controls
without authority or permission. The team had effective control of the operating system one hour after they
began. The agency immediately stopped the penetration testing "game," being convinced that it was
vulnerable and needed a serious penetration testing assessment of its flaws.

Penetration testing is best employed to explore the broad capabilities of the object system for flaws
against security policy, rather than in a gaming situation between the vendor and the penetration team
trying to violate access restrictions to an identified protected object -- "hack-and-patch". Dummy target
acquisition penetration goals waste effort by forcing the test team to prepare and debug a break-in, rather
than focusing their energy on proven methods of finding flaws.

International travel requires passports and visas to control crossing borders. In banking, turning account
balances into cash, is a form of boundary crossing called "conversion." Control is imposed at the human
interface. The Reference Monitor defines a "security perimeter" between itself and untrusted user
application code, and between different user processes. Flaws within the untrusted application code have
no impact on the TCB and are of little interest to security or penetration testing. Flaws internal to the
security kernel are of interest to security, but they can not be exploited unless the security perimeter is
breached or caused to malfunction (e.g., fool the system into giving unauthorized access). Therefore,
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much of penetration testing focuses on flaws in the design, implementation, and operations integrity of
the security perimeter, the control of the boundary crossings of this critical security interface. 

The variety of the TCB evidence described in Section 2.2 are documents of the TCB policy, model,
design, implementation, test, and operation. The analysis of the adequacy of the evidence can be
overwhelming. Figure 3-1 shows the evidence implication chain: the operation is secure according to
proper procedures, facility management, and reliable hardware for the implementation (code); the code
implies its secure specs (DTLS and/or FTLS); the specs are correct per the model; and, the model
satisfies the security policy and requirements of the end user. Reasoning logically, secure operation
depends on secure hardware, code, specifications, model, policy, and requirements, and in that order of
dependency.   

    

TCB Operation -1-> Hardware -2-> Code -3-> DTLS -4-> FTLS -5-> Model -6-> Policy 
 
 Where:
 
 -1-> Configuration Management, Trusted Facility Manual (TFM), 

Secure Features Users Guide (SFUG), and  
Concept of Operations (CONOPS)    

 -2-> Security Functional & Penetration Testing                                   
 Covert Channel Analysis                                                     
 -3-> Code-to-Specification Correspondence Analysis                               
 -4-> Code-to-Specification Correspondence Analysis for A1 Class                  
 -5-> Proof of Correctness for A1 Class                                           
 Specification-to-Model Correspondence for B2, B3 Classes                    
 -6-> Model Axiom Proofs for B2, B3, A1 Classes                                   
                                                                                                                                                              
                                              

Figure 3-1.        Evidence Implication Chain

                                             

Penetration testing attempts to find "kinks" in the reasoning chain by studying all the TCB evaluation
evidence. As in all things, history is a great teacher, and the results of past penetration tests are a major
starting place for penetration testing. There is a considerable wealth of published material on penetration
studies in Section 7, References.

3.2 How Do You Find Flaws?
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At the heart of the TCSEC is mathematical induction, sometimes called the "Induction Hypothesis." It is
the theoretical basis of TCSEC security. It argues that:

(1) If the TCB starts operation in a secure state, and the
(2) TCB changes state by execution from a closed set of transforms 

(i.e., functions), and
 (3) each transform preserves defined security properties, then

(4) by mathematical induction, all states of the TCB are secure.

Finding flaws begins with finding weaknesses in implementation of this protection theory  -- policy,
model, architecture, FTLS/DTLS, code, and operation. The evidence implication chain of Figure 3-1
forms the basis of the flaw search for violations of the Induction Hypothesis. As examples, false
clearances and permissions void initial conditions (voids rule 1), bogus code (e.g., Trojan Horse, virus)
violates the closed set (violates rule 2), and a large covert channel does not preserve the information
containment security properties of functions (spoils rule 3) of the Induction Hypothesis. In practice, the
penetration test is a social process managed according to a plan with practical goals, bounds, resources,
and schedules.

3.2.1 Develop A Penetration Test Plan

Establishing the test ground rules is a particularly important part of penetration testing and is captured
in the penetration test plan, a part of the DOD-2167A STP at PDR for development programs, and a
stand alone document for post-FQT government evaluations. The test plan defines the test objectives, the
product configuration, the test environment, test resources, and schedule.  In particular, the test plan
defines the criteria for  test completion.

3.2.2 Establish Testing Goal

The ground rules for penetration testing define successful completion. The penetration testing is
successfully concluded when: 

(1) A defined number of flaws are found, 
(2) A set level of penetration time has transpired, 
(3) A dummy target object is accessed by unauthorized means, 
(4) The security policy is violated sufficiently; or,
(5) The money and resources are exhausted.

 
Most often the last criterion ends the penetration test, after a defined level of effort is expended. For some
systems, multiple independent penetration teams are employed to provide different perspectives and
increased confidence in the security of the product if few minor flaws are found.  

3.2.3 Define The Object System To Be Tested 

Penetration testing can be applied to almost any system requiring TCSEC evaluation. However, C1, C2,
or B1 candidate systems are intended for benign environments, protected by physical, personnel,
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procedural, and facility security. Systems in these benign evaluation classes are not designed to resist
hostile attack and penetration. Such attacks are always likely to uncover flaws. The TCSEC, wisely does
not require penetration testing for these systems. Penetration testing is most valuable for testing security
resistance to attack of candidate systems for evaluation classes B2, B3, or A1, systems designed to
operate in hostile environments.

A system intended for TCSEC evaluation at B2 or higher is delivered with a collection of material and
documentation that supports the security claim. (See the description in Section 2.) This controlled
collection of security evidence defines the security system to be penetration tested. The evidence must be
frozen and unmodified during the penetration testing period to avoid testing a moving target. 

In circumstances where the Target Of Evaluation (TOE) can not be tested in a controlled laboratory
environment and must be tested in situ, there is a possibility of conflict between users and evaluators.
Experience has shown that probing for security flaws may require system halts and dumps by the
penetration team, and when tests succeed they yield unpredictable results, e.g., uncontrolled file
modification or deletion, or a system crash, which disrupts normal operation. Therefore, penetration
testing should be performed on a stand alone copy of the TOE to assure non-interference with real users
of the system. 

When the object system is a network, the TCB is distributed in various components, the whole collection
of which is called the network TCB, (NTCB). As noted in the TNI, penetration testing must be applied
to: (1) the components of the NTCB, i.e., the partitions of the NTCB, and; (2) the whole integrated
network NTCB [TNI87]. Therefore, the TNI Mandatory, Audit, Identification & Authentication, and
Discretionary (M-A-I-D) network components must be penetration tested individually and collectively --
individually during the component evaluation, and collectively during the network evaluation.

In a similar manner, trusted applications, e.g., a trusted database management system (DBMS), must be
penetration tested individually as a component, and collectively with the operating system TCB on which
it is dependent, according to the "evaluation by parts" criteria of the TDI [TDI91].

3.2.4 Posture The Penetrator

When an actual test is required to confirm a flaw hypothesis, a host of test conditions must be established,
which derive directly from the test objectives and the test environment defined in the plan. These
conditions derive from the security threats of interest and the posture of the "simulated" antagonist
adopted by the evaluators. Will it be an "inside job," or a "break and entry" hacker? These assumptions
demand different conditions for the test team. The test conditions are described as "open box" or "closed
box" testing, corresponding to whether the test team can place arbitrary code internal to the system (open
box) or not, restricted only to externally stimulated functional testing (closed box). The TNI testing
guideline calls these "black box" (functional) and "white box" (internal) testing, corresponding to closed
box and open box testing, respectively [NCSC88b]. Open box penetration testing is analogous to CSU
testing, where access to the internal code is possible, and closed box penetration testing is analogous to
CSCI testing, where code modules are an integrated closed whole. In open box testing, we assume the
penetrator can exploit internal flaws within the TCB and work backwards to find flaws in the security
perimeter that may allow access to the internal flaws. In the case of a general purpose system such as
UNIX, open box testing is the most appropriate posture. For special purpose systems, such as network
NTCB components, which prohibit user code, e.g., where code is in ROM, closed box penetration testing,
by methods external to the product, is analogous to electrical engineering "black box" functional testing.
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In closed box testing the penetrator is clearly seeking flaws in the security perimeter and exploiting flaws
in the implementation of the Interface Control Document specifications, (ICD). Open box testing of the
NTCB is still a test requirement of the vulnerability of the network to Trojan Horse or viral attacks. 

3.2.5 Fix Penetration Analysis Resources

It was believed that finding flaws in OS VS2/R3  would be difficult [MCPH74]. However, another study
claimed "The authors were able, using the SDC FHM, to discover over twenty such 'exposures' in less
than 10 man-hours, and have continued to generate 'exposures' at the rate of one confirmed flaw
hypothesis per hour per penetrator.  ...  Only the limitations of time available to the study governed the
total number of flaws presented" [GALI76].

Penetration testing is an open-ended, labor-intensive method seeking flaws without limit. The testing must
be bounded in some manner, usually by limiting labor hours. Small teams of about four people are most
productive. Interestingly, penetration testing is intense, detailed work that burns out team members if
regular rotation of the evaluators is not carefully managed. Evaluators should be encouraged to participate
in penetration testing with reward opportunities to pursue new technologies that promise better secure
systems. Experience shows the productivity of the test team falls off after about six months. Therefore,
a penetration test by four people for no more than six months -- 24 person months, is optimal.
Composition of the test team must include people knowledgeable in the target system, with security and
penetration testing expertise. Much time is spent perusing the security evidence. However, there must be
liberal access to the target system to prepare and run live tests. The team needs access to all the TCB
creation tools -- compilers, editors, configuration management system, word processors -- and a database
management system (DBMS) to inventory their database of potential flaws, and to store their assessments
of the flaws. 

3.3    Flaw Hypothesis Methodology (FHM) Overview

COMPUSEC's (Computer Security's) raison d'etre is to automate many of the security functions
traditionally enforced by fallible human oversight. In theory a trusted system should perform as its security
specifications define, and do nothing more. In practice most systems fail to perform as specified, and/or
do more than is specified. Penetration testing is one method of discovering these discrepancies.  

3.3.1 Evidence Implication Chain

For trusted systems to be rated B2 or better, the trust evidence must show that theory and practice agree,
that the implication chain is correctly satisfied at each step. Penetration testing seeks counter arguments
to the truth asserted by the evidence; i.e., it seeks to establish the evidence is false, or incomplete. A flaw
is such a counter argument. A flaw is a demonstrated undocumented capability, which can be exploited
to violate some aspect of the security policy. The emphasis of the FHM is on finding these flaws. It is not
on building demonstrations of their exploitation, though such examples may have merit in some cases.
Exploitation demonstrations consume valuable resources that can better be applied to further flaw
assessment of the implication chain.
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3.3.2 Stages Of Flaw Hypothesis Methodology (FHM)

FHM consists of four stages: 

(1) Flaw Generation develops an inventory of suspected flaws.
(2) Flaw Confirmation assesses each flaw hypothesis as true, false,

or untested.
(3) Flaw Generalization analyzes the generality of the underlying security 
weakness represented by each confirmed flaw. 
(4) Flaw Elimination recommends flaw repair, or the use of external controls to

manage risks associated with residual flaws.

These stages are shown if Figure 3-2.
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Figure 3-2.        Flaw Hypothesis Methodology (FHM) Process Stages

Flaw Generation can be likened to a computer strategy game. In Artificial Intelligence (AI) game
software, there is a body of logic that generates "plausible moves" that obey the legal constraints of the
game, e.g., assures a chess pawn never moves backward. In like fashion, penetration testing needs a
"plausible flaw generator." Flaw finding begins with the evidence implication chain, our experience of
security failures of the reasoning chain in other systems, and their potential existence in the target system.
The security evidence for the target system is the principal source for generating new flaw hypotheses.

Continuing our AI game analogy, there is a body of heuristic rules the game employs to determine good
plausible moves from poor ones. Likewise, in penetration testing Flaw Confirmation, there is human
judgment, i.e., a cerebral filter, that evaluates and rates each prospective flaw in terms of its probability
of existence and how significantly it violates the security policy. Filtering flaws for confirmation employs
desk checking of code, specifications, evidence in documentation, and/or live testing.
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The Flaw Generalization stage of penetration testing gives an assessment of our results in progress, the
game analogy of "winning" or improving game position. Flaw Generalization assesses confirmed flaws,
seeking basic computer science reasons why they exist. For example: in the penetration testing of OS VS2
[LIND75] a simple coding error was traced to a library macro and multiple instantiations of the flaw in
the code. Inductive reasoning on the cause of confirmed flaws can lead to new flaws, generators of still
more weaknesses.  

The Flaw Elimination stage considers results of the Generalization stage and recommends ways to repair
flaws. Implementation flaws are generally easier to repair than design flaws. Some flaws may not be
practical to repair; slow covert timing channel flaws may be tolerable, for example. These flaws remain
in the system as residual flaws, and place the operational environment at risk. However, external
countermeasures can be recommended to the DAA for managing these risks, by lowering the TCSEC
Risk Index [CSC85] for example.

3.4    Flaw Generation

Flaw Generation begins with a period of study of the evidence to provide a basis for common
understanding of the object system. Early in the effort there is an intensive team brain-storming "attack
the system" session. Other attack sessions are on-going throughout the penetration test. Target system
expertise must be represented in the attack sessions.  Each aspect of the system design is reviewed in
sufficient depth during the session for a reasonable model of the system and its protection mechanisms
to be understood and challenged. Flaws are hypothesized during these reviews. Critical security design
considerations are the basis for the penetration team's probing of the target system's defenses. These
design considerations become the "plausible move generators" of the Flaw Generation phase.  The most
productive "top 10" generators are tabulated in Table 3-1.

Each candidate flaw is described on a Flaw Hypothesis Sheet (FHS). (See Appendix 6.2 for details.) The
total set of FHS becomes the flaw database that guides and documents the penetration analysis.  

Table 3-1.        Most Productive Flaw Generators



Performing Penetration Testing

23

1. Past experience with flaws in other similar systems.
2. Ambiguous, unclear architecture and design.
3. Circumvention of "omniscient" security controls. 
4. Incomplete design of interfaces and implicit sharing.
5. Deviations from the protection policy and model.
6. Deviations from initial conditions and assumptions.
7. System anomalies and special precautions.
8. Operational practices, prohibitions, and spoofs. 
9. Development environment, practices, and prohibitions.
10. Implementation errors.

3.4.1 Past Experience

The literature is filled with examples of successful penetration attacks on computer systems [ABBO76,
ATTA76, BELA74, BISB78, BISH82, GALI75, GALI76, GARF91, KARG74, MCPH74, PARK75,
SDC76]. There is also a body of penetration experience that is vendor proprietary or classified [BULL91,
LIND76, PHIL73, SDC75]. Though general access to this past experience is often restricted, such
experience is among the best starting points for Flaw Generation. The Navy should have access to these
materials, and/or should collect past results and its own new penetration testing experience.

3.4.2 Unclear Design

The design must clearly define the security perimeter of the TCB. How are boundary crossings mediated?
Where are the security attributes -- permissions, classifications, IDs, labels, keys, etc. -- obtained, stored,
protected, accessed, and updated?  What is the division of labor between hardware, software, and human
elements of the TCB?  And how are all the myriad other secure design issues described elsewhere
satisfied [GASS88]?  If the secure design cannot be clearly described, it probably has holes. The team
will  rapidly arrive at consensus by their probing, and uncover numerous flaws and areas for in-depth
examination, particularly weakness in the evidence implication chain.

3.4.3 Circumvent Control

What comes to mind is Atlas down on one knee holding up the world. The anthropomorphic view of TCB
design gives the numerous protection control structures omniscience in their critical Atlantean role in
supporting the secure design. If such control can be circumvented and bypassed, the security can be
breached. The security architecture evidence must show the noncircumventability of the control
structures. The attack sessions will rapidly identify these omniscient objects, be they password checkers,
label checkers, I/O drivers, memory maps, etc. A method of determining their vulnerability to attack is
to build a dependency graph of subordinate control objects upon which the omniscient ones depend. Each
node in the graph is examined to understand its protection structure and vulnerability to being
circumvented, spoofed, disabled, lied to, or modified. If the security architecture is weak or flawed,
control can be bypassed. The penetration testing of OS VS2/R3 [SDC76] gives a detailed example of the
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use of dependency graphs to determine the vulnerability of VS2 to unauthorized access to Job Data Sets,
virtual memory, and password protection control objects.
 

3.4.4 Incomplete Interface Design

Interfaces are rife with flaw potential. Where two different elements of the architecture interface there is
a potential for incomplete design. This is often the case because human work assignments seldom give
anyone responsibility for designing the interface. Though modern methodologies for system design stress
Interface Control Documents (ICD), these tend to be for interfaces among like elements, e.g., hardware-
hardware interfaces, software-software protocols. The discipline for specifying interfaces among unlike
elements is less well established. Hardware-software, software-human, human-hardware,
hardware-peripheral, and operating system-application interfaces can have incomplete case analysis. For
example, the user-operator interface to the TCB must deal with all the combinations of human commands
and data values to avoid operator spoofing by an unauthorized user request. Operating procedures may
be hardware configuration dependent. For example, booting the system from the standard drive may
change if the configuration of the standard drive is changed. All the various error states of these interfaces
may not have been considered. 

Implicit sharing is now a classical source of incomplete design flaws. Sharing flaws usually manifest
themselves as flaws in shared memory or shared variables between the TCB and the user processes
during parameter passing, state variables context storage, setting status variables, reading and writing
semaphores, accessing buffers, controlling peripheral devices, and global system data access, e.g., clock,
date, public announcements. Careful design of these interfaces is required to remove system data from
user memory.  

3.4.5 Policy And Model Deviations

For B2 and higher evaluation classes, the security evidence includes a formal security policy and a model
of how the target system meets the policy. Subjects and objects are defined. The rules of access are
specified. For lower evaluation classes, the policy and model are less well stated and, in the early years
of penetration testing, required the penetration team to construct or define the policy and model during
the attack sessions. However, penetration testing is not required for these classes today.

Consider the adequacy of the policy and the model for the target system. Is it complete?  Is it correct
policy? Are there policies for Mandatory and Discretionary Access Control (MAC and DAC),
identification and authentication (I&A), audit, trusted path, and communications security? Examine the
security architecture and the TCB design to see if there are deviations from the stated policy or model.
For example, are there user-visible objects that are not defined in the model, such as buffers and queues?
Omniscient control objects, as described in Section 3.4.3, should certainly be represented.  Are there
deviations in the implementation of the policy and model?  This consideration receives greater emphasis
during Flaw Confirmation, however, there may be reasons to generate implementation flaws during Flaw
Generation.

3.4.6 Initial Conditions
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Assumptions abound in secure system design, but are not documented well. Evaluation class A1 does
better than other evaluation classes because of it more rigorous formal design and use of formal
specifications which require entry and exit assertions to condition the state machine transforms. For all
evaluation classes the assumptions and initial conditions are often buried in thick design documentation,
if documented at all. If these assumptions can be made invalid by the user, or if the initial conditions are
different in the implementation from that of the design assumptions -- reality  not theory -- the policy and
model may be invalid and  flaws will exist. The Induction Hypothesis of Section 3.2 begins with "... starts
operation in a secure state ..." Initial conditions determine the starting secure state. If the actual initial
conditions are other than as assumed in the design, attacks will succeed. 

The whole range of user security profiles and administrative security data, IDs, clearances, passwords,
permissions (MAC and DAC), define the "current access" and "access matrix" of the Bell-LaPadula policy
model [BELL76]. These data are initial conditions. Their correct initialization is a testable hypothesis.
Other assumptions and initial conditions need to be established and tested by penetration analysis
including, the computer hardware configuration, software configuration, facility operating mode -- periods
processing, compartmented, system high, and MLS -- operator roles, user I&A parameters, subject/object
sensitivity labels, system security range, DAC permissions, audit formats, system readiness status, and
more.

3.4.7 System Anomalies

Every system is different. Differences which may have security ramifications are of particular interest. The
IBM Program Status Word (PSW) implements status codes for testing by conditional instructions, unlike
the Univac 1100, which has direct conditional branching instructions. The IBM approach allows
conditional instructions to behave as non-conditional instructions if the programmer avoids checking the
PSW [SDC76]. That is an anomaly. The Burroughs B5000-7000 computer-series Compiler software has
privilege to set hardware tag bits that define "capabilities,"  many of which are security sensitive, such
as write permission. The Master Control Program (MCP), checks the tag bit for permission validity. User
code does not have this privilege. Code imports can circumvent such checks [WILK81]. That is an
anomaly. The IBM 370 I/O channel programs are user programs that can access real memory via the
"Virtual = Real" command without a hardware memory protect fault [BELA74]. That's an anomaly.
Nearly every software product has clearly stated limits and prohibitions on use of its features, but few
define what occurs if the prohibition is ignored. What happens when an identifier greater than eight
characters is used? Is the identifier truncated from the left, right, middle, or is it just ignored? Anomalous
behavior may not be security-preserving functionality per the Induction Hypothesis theory that can be
exploited.

3.4.8 Operational Practices

The complete system comes together during operation when many flaws reveal themselves. Of particular
interest is the man-machine relationship, the configuration assumptions, and error recovery. A well
designed TCB will have the system's boot process progress in secure stages of increasing Operating
System capability. Each stage will check to assure it begins  and ends in a secure state. If there is need
for human intervention to load security parameters, the human must be identified, authenticated, and
authorized for known actions. The evaluator must study the process to see if the design and
implementation of the boot process progresses correctly. For example, how is the security
officer/administrator authenticated? If via passwords, how did the password get loaded into the initial boot
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load? Where does the operator obtain the master boot load? From a tape or disk library? Is the physical
media protected from unauthorized access, product substitution, or label switching? If the security officer
loads or enters on-line permissions to initialize the security parameters of the system, how does the
security officer authenticate the data? If users send operator requests to mount tapes/disks, to print files,
or a myriad of other security sensitive actions, how does the TCB support the operator from spoofs to take
unauthorized action? If the system crashes, does the system re-boot follow a process similar to the initial
"cold" boot? If there is a "warm" boot mode -- a short cut boot which salvages part of the system state --
does the security officer have a role in the boot to ensure the system begins in a secure state? How is the
assurance determined?
   
A common example of an initialization flaw is to discover the system was shipped from the vendor with
the "training wheels" still on [STOL89]. This class of flaw has been known to include training files that
provide ID-password-authorizations to users so they may train for jobs as security officers, system
administrators, database controllers, system operators. These files were not removed by good facility
management and system operational practice per the Trusted Facility Manual (TFM), and can be used
by unauthorized parties to circumvent security controls.

3.4.9 The Development Environment

Flaws may be introduced by bad tools and practices in the security kernel/TCB development environment.
A simple example is the conditional compilation, which is used to generate special code for debugging.
If the released code is not recompiled to remove the debug "hooks," the operational system code violates
the closed set rule 2, and the secure transform rule 3 of the Induction Hypothesis of Section 3.2, similar
to a trap door to circumvent security measures. 

Large untrusted reuse and run-time libraries are properties of many programming environments. The TCB
may be built using code from the library which finds its way into operational use. All kinds of security
flaws may obtain from such environments. If the libraries are not security sensitive, they can be searched
for flaws that are exploitable in the operational TCB. If the penetration team can substitute its own code
in the libraries, even more sophisticated flaws can be created. Run-time linkers and loaders have similar
properties of appending unevaluated code to the trusted object code being loaded to enable
code-Operating System communication. If access to such tools is unprotected, similar code-substitution
attacks are possible.

A classic attack on an operational system is to attack its development environment, plant bogus code in
the source files, and wait for the normal software update maintenance procedures to install the
unauthorized code into the operational system object code.  If the development and operational system
are the same, then the penetration team must mount an attack on the development environment first,
particularly the system configuration files. Flaws found there relate directly to the operational system, the
source files of which are then accessible and modifiable by the penetrator without authorization.
Substitute configuration files give the penetrator a high probability attack and essentially control of the
TCB. 

3.4.10 Implementation Errors

In any system built by humans, there will be errors of omission and commission. This is not a promising
class of flaws to search for, as there is no logic to them. Many are often just typos. Implementation errors
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that can be analyzed are those of the IF-THEN-ELSE conditional form. Often the programmer fails to
design or implement all the conditional cases. Incomplete case analysis may occur if the code logic
assumes some of the predicates are performed earlier. Most often implementation flaws are just coding
errors.

Another area for investigation is macros and other code generators. If the original macro is coded
incorrectly, the error code will be propagated in many different parts of the system. Similarly, if data
declarations are incorrect, they will affect different parts of the code. Incorrect code sequences should be
traced back to the source code and the automatic code generators to see if the code error appears in
multiple parts of the TCB.
 
Sometimes there are errors in the development tools that generate bad code. Few configuration
management tools provide a trusted code pedigree or history of all the editor, compiler, linker tools that
touch the code. Therefore, an error in these tools, which becomes known late in the development cycle
and is fixed, may miss some earlier generated modules that are not regenerated. The penetration team may
find it fruitful interviewing the development team for such cases. 

3.5 Flaw Confirmation

Conducting the actual penetration test is part of the testing procedure developed in the plan. The bulk of
the testing should be by Gedanken experiments, thought experiments that confirm hypothesized flaws in
the system by examination of the documentation evidence and code. There are three steps to the Flaw
Confirmation stage: 

(1) Flaw prioritization and assignment, 
(2) Desk checking, and 
(3) Live testing.

3.5.1 Flaw Prioritization and Assignment

The Flaw Hypothesis Sheets (FHS) represent a comprehensive inventory of potential flaws. Sorted by the
probability of existence, payoff, i.e., damage impact, if confirmed, work factor/effort to confirm, and area
of the system design, they provide a ranking of potential flaws for each design area from high probability
of existence/high payoff (HH) to low probability/low payoff (LL). Usually, only high and medium ranks
are studied. The team divides the rank lists among themselves based on expertise in the different system
design areas. They move out as individuals on their lists seeking to confirm or deny the flaws. Evaluators
share progress and findings at daily team meetings.  Management will reallocate staff and FHS to balance
the work load. Often, confirmed flaws raise the priority of other FHS, or provide the analysts with insight
to generate new FHS.

3.5.2 Desk Checking

The evaluator studies the FHS and the TCB evidence. Code, models, code correspondence maps or
dependency graphs are examined to see if the flaw exists. The evaluator must be flexible in considering
alternatives, but concentrate on what exists in the actual code and other evidence. The evaluators use code
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walk throughs, prior test results, their own insights, and conversations with other team members to reach
conclusions on the likelihood of the flaw's existence.

Results are documented on the FHS. Confirmed flaws are flagged in the database for later examination.
An evaluator spends a few days, at most, on each flaw. The desk checking continues for weeks, and
possibly a few months, yielding a FHS productivity rate of 10-20 FHS/person-month. The work is
tedious, detailed, and requires destructive thinking. Occasionally a FHS is of sufficient complexity and
interest to warrant a live test, but the investment in the testing process will lower productivity.

3.5.3 Live Testing

Test case design, coding, and execution is expensive and not the preferred FHS evaluation method.
However, testing is often the fastest way to confirm complex or time-dependent flaws. In penetration
testing, live tests are similar to CSCI functional tests, except the FHS is the (dis)functional spec, and
penetration testing may be destructive of the system. 

Avoid running tests on the operational system since they can have unpredictable results. Also, the testing
is to confirm the flaw, not to exploit it. Test code should be a narrowly focused (by the FHS),  quick
one-shot routine that is easier to produce if there is a rich library of debug and diagnostic routines.  

3.6 Flaw Generalization

When the team assembles for the daily meeting, the confirmed flaws of the day are briefed and examined.
Each team member considers the possibility that a confirmed flaw might exist in his area, or if the test
code can be used on his FHS. Often a confirmed flaw has only medium payoff value but can be used in
conjunction with other confirmed flaws to yield a high payoff. This stringing of flaws together is called
"beading" and has led to many unusual high-payoff penetrations.
  
Deductive thinking confirms a flaw hypothesis. Inductive thinking takes the specific flaw to a more
general class of flaws. The team examines the basic technology upon which each confirmed flaw is based
to see if the flaw is a member of a larger class of flaws. By this generalization of the flaw, one can find
other instances of the weakness, or gain new insight on countermeasures. Inductive thinking proceeds
simultaneously with deductive thinking of new instances of the flaw, so that the flaw becomes a new flaw
hypothesis generator. Some classic flaws were discovered by this induction, e.g., parameter passing by
reference [LIND75, SDC76], piece-wise decomposition of passwords [TANE87], puns in I/O channel
programs [ATTA76, PHIL73], and time-of-check-to-time-of-use (TOCTTOU) windows [LIND75].
These flaws are described in Section 4.

3.7 Flaw Elimination 

Experts have argued the futility of penetrate and patch, hack-and-patch methods of improving the trust
of a TCB for substantial reasons that reduce to the traditional position that you must design security,
quality, performance, etc. into the system and not add it on [SCHE79]. However, most human progress
is made in incremental forward steps. Products improve with new releases and new versions which fix
flaws by patching, work-arounds, and redesign. 
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The TCSEC requires all known flaws be repaired. The evaluators can suggest to the vendor repair of
simple implementation and coding errors, or recommend known generic design flaw countermeasures.
After repair the system must be reevaluated to confirm the flaw fixes and to ensure no new flaws were
introduced. Reevaluation is a complete repetition of the penetration testing process. However, application
of the Ratings And Maintenance Process (RAMP) to B2 and better evaluations may be a possible method
to avoid total repetition. This speculation is described in Section 5.3.6. It is impractical for the vendor to
fix  some flaws. These residual flaws will result in a lower class rating. However, the using agency can
prepare a risk analysis that shows the DAA alternative security measures to counter the residual flaws.
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4.

4. EXPERIENCE AND EXAMPLES

Flaw Hypothesis Methodology (FHM) has been a cost effective method of security system assurance
assessment for over twenty years. Unlike other assurance methods, which focus on more narrow
objectives, e.g., formal correctness proofs of design, or risk assessment costs of failures, FHM seeks
security flaws in the overall operation of a system due to policy, specification, design, implementation,
and/or operational errors. It is a complete systems analysis method which uncovers flaws introduced into
the system at any stage of the product life cycle.

4.1 FHM Management Experience

For weak systems in the TCSEC C1-B1 classes, experience predicts a typical penetration  team of four
people operating for six months will generate about a 1000 FHS and assess about 400 of the highest
priority.  Some 50-100 of these will be confirmed flaws. That yields a productivity of a flaw every one
to two person-weeks. Stronger systems in the TCSEC B2-A1 classes, by definition, must be flawless.
However, even these systems have flaws; far fewer of course because of the greater attention to secure
system development. Such flaws are repaired, audited, or considered an acceptable risk. Higher flaw rates
may signal a lesser evaluation class than B2 is warranted for the target system. Appendices 6.3 and 6.4
provide a model of the tasks, schedules, and person-months of effort to perform a competent penetration
test based on this past experience. Specific penetration test planning should adapt these data for the
conditions and resources available.

4.2 Taxonomy Of Security Flaws  

A taxonomy of flaws is useful if it organizes flaws for the following purposes:

(1) Provides a central reference collection of flaws.
(2) Catalogs flaws for descriptive communication,
(3) Finds repetitive patterns signaling a common fault.
(4) Enhances tool-supported flaw search.
(5) Suggests common attack methods.

An extensive library of flaws is in preparation by NRL which addresses purpose (1) [BULL91].  This
section suggests "severity of damage" as a taxonomy, satisfying cataloging purpose (2). Attempts to define
generic flaw patterns and build pattern matching tools to aid flaw finding in source code, exemplifies
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purposes (3) and (4), and are discussed in Section 5.1.  Purpose (5) is a promising taxonomy and is
discussed in Section 4.3.
 
Confirmed flaws are sorted into vulnerability classes shown in Table 4-1. These vulnerability classes are
based on the degree of unauthorized control of the system permitted by the flaw, i.e., damage extent. The
greatest vulnerability is TCB capture; the machine is under total control of the interloper, (TC -- total
control -- flaws).  Flaws that permit lesser control are unintentional, undocumented capabilities that
violate the policy model, but do not allow total control, (PV -- policy violation -- flaws). Denial of Service
(DOS) flaws permit the penetrator to degrade individual and system performance, but do not violate the
confidentiality security policy, (DS -- denial of service -- flaws). Installation-dependent flaws are
weaknesses in the TCB that obtain from local initialization of the system, such as a poor password
algorithm, (IN -- installation dependent -- flaws). They may be TC, PV, or DS flaws as well. Lastly, there
are harmless flaws in the sense that they violate policy in a minor way, or are implementation bugs, which
cause no obvious damage, (H -- harmless -- flaws).  These codes categorize flaws presented in
subsequent sections. 

Table 4-1.        Vulnerability Classes Of Flaws

 1. Flaw Gives TCB/System Total Control, (TC)
2. Security Policy Violation, (PV)
3. Denial of Service, (DS)
4. Installation Dependent, (IN)
5. Harmless, (H)

4.3 Taxonomy Of Attack Methods

FHM is a labor intensive method of penetration testing.  DBMS, writing, development, and testing
support tools are helpful. Automated tools have not succeeded in finding flaws, where the greatest
intellectual effort is required. This section provides a representative collection of attack methods found
effective in penetration testing by the innovative and skilled penetration teams using the FHM. 

4.3.1 Weak Identification/Authentication

Passwords are the cheapest form of authentication. Weak passwords, however, are quite expensive,
allowing the penetrator to impersonate key security administrators to gain total control of the TCB, (TC)
flaw. In one system, a weak password protected the password file itself. The password was a short
English word which took but a few hours of trial and error to guess. A popular program called "Crack"
will  run for days trying to crack passwords in the UNIX password file [MUFF4a]. The program has a
password candidate generator, based on popular passwords, some permutation algorithms, and
installation parameters, that encrypts the candidate and compares it with the list in the password file. It
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reports successful hits. Since most passwords are initialized by system administration, this attack is an
example of an operational flaw and an initial-condition (IN) flaw. 

On the DEC PDP-10 and many contemporary machines, there are powerful string compare instructions
that are used to compare stored with entered passwords. These array instructions work like "DO-WHILE"
loops until the character-by-character compare fails, or the password strings end. It was discovered in the
TENEX Operating System that the instruction also failed when a page fault occurred. This turned a binary
password predicate -- yes/no -- into a trinary decision condition -- yes/no/maybe -- that enabled piece-
wise construction of any password in a matter of seconds. In this case the flaw was a weak password
checking routine that permitted the user to position the candidate password across page boundaries
[TANE87]. This is an example of a hardware anomaly and an implicit memory sharing (TC) flaw.
 
On the IBM OS VS2/R3 and similar vintage OS, files or data sets are protected by password. When the
user is absent during batch processing, surrendered passwords for the file are placed in the Job Control
Language (JCL) load deck and queue file for command to the batch process. The JCL queue is an
unprotected database, which is readable by any user process, thus permitting the stealing of passwords.
This is an example of a badly designed user-system interface, where system data is placed in the user's
address space [MCPH74, SDC75, SDC76]. It is also an example of bad security policy, a (PV) flaw.

In most systems, the user logs into a well designed password authentication mechanism. However, the
system never authenticates itself to the user. This lack of mutual authentication permits users to be
spoofed into surrendering their passwords to a bogus login simulation program left running on a vacant
public terminal. This spoof has been around forever and is still effective. It is an example of a poor
user-system interface that yields a policy violation (PV) flaw. Mutual authentication is a necessity in the
modern world of distributed computing, where numerous network servers handle files, mail, printing,
management, routing, gateways to other network, and specialized services for users on the net. Without
it, such services will surely be spoofed, modified, and/or falsified. New "smart card" I&A systems employ
mutual authentication countermeasures via encrypted challenge-response tokens [KRAJ92]. 
 

4.3.2 Security Perimeter Infiltration

Untrusted code must be confined and only permitted to call the TCB in a prescribed manner for secure
access to needed system services [LAMP73]. These boundary crossings of the security perimeter are often
poorly designed and result in "infiltration" flaws. A classic example of this is the uncontrolled channel
program of the IBM 370. Since channel programs are allowed to be self modifying to permit scatter reads
and writes, and the user can turn off memory mapping, e.g., Virtual = Real,  it is possible to write into
protected system memory and modify code and/or process management data. Attempts to eliminate these
problems by static analysis of the channel programs in VM/370 failed to prevent clever "puns" in the code
from continued exploitation [ATTA76, BELA74, PHIL73].

Another example of poor confinement is the Honeywell HIS 6000 GCOS suspend feature that allows a
user to freeze an interactive session for a lunch break or longer suspension, and resume later by thawing
the program. The design flaw stores the frozen image in the user's file space, including all the sensitive
system context needed to restart the code. It is a simple process for a user to edit the frozen image file and
modify the context data such that the restarted program runs in system state with total control of the TCB
(TC) flaw. This is yet another example of an implied memory-sharing flaw. 
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Among the most sophisticated penetrations is the legendary breakpoint attack of Linde/Phillips [ATTA76,
PHIL73]. It is an excellent example of a beading attack. When a user plants a breakpoint in his user code,
the system replaces the user code at the breakpoint with a branch instruction to the system. The system's
breakpoint routine saves the user code in a system save area. Later, when the breakpoint is removed, the
user code is restored. The breakpoint feature helps the penetrator plant code in the system itself, i.e., the
replaced user code; an example of a harmless (H) flaw. It was observed that another existing harmless
hardware flaw, a move string error exit, left the address of the system memory map, rather than the
address of the string, upon error return. It was possible to induce the string flaw by reference to an
unavailable memory page, i.e., a page fault. A third harmless flaw allowed control to return to the caller
while the string move was in progress in the called program. The evaluators set up the bead attack by
planting a breakpoint at a carefully prepared instruction on the same page as a string move command.
They carefully selected a string that crossed a page boundary. They executed the string move, and upon
regaining control, released the page containing the end of the long string. That caused a page fault, when
the string move crossed the page boundary, at which time the breakpoint was removed.  In restoring the
pre-breakpoint user code, the system retrieved the saved user code but, because of the harmless hardware
string-error flaw, erroneously wrote the user code into protected system memory, specifically the system
page map.  This unauthorized system modification was possible because a hardware design flaw in the
page fault error return left the page address of the system memory map, not the page address of the
original user's string.  The attack had successfully modified the system map, placing user data in the
system interrupt vector table. The attack gave arbitrary control of the TCB. Another subtle flaw in implicit
memory sharing, a (TC) flaw.

4.3.3 Incomplete Checking

Imports and exports cross the security perimeter per the TCSEC are either label checked or use implicit
labels for the I/O channel employed. Lots of flaws occur when labels are not employed, or employed
inconsistently. Another attack exploits interoperability between systems which use different label
semantics. The Defense Data Network (DDN), employs the standard IP datagram Revised Internet
Protocol Security Option (RIPSO) security sensitivity label [RFC1038]. It differs from the emerging
Commercial IP Security Option (CIPSO) standards. Here is a situation ripe for a future security attack
and (IN) flaw.

Array-bounds overflow is a particularly nasty attack which is quite pervasive and difficult to counter. The
flaw manifests itself in system operation, but its cause is traceable to the development compiler's failure
to generate code for dynamic array bounds checking. When the array bound is exceeded, the code or data
parameters adjacent to the array are overwritten and modified.  In one case the user-entered password was
stored adjacent to the system stored password so the two strings (arrays) could be rapidly compared.
However, there was no bounds checking.  The user simply entered a maximum sized password twice so
that it overflowed the user array into the system array creating a password match [BISH82]; a certain
(TC) flaw. 

Incomplete case analysis leads to flaws. Either the design specification has not considered all the
conditions of an IF-THEN-ELSE form, or the programmer goofed. In either event, the penetrator creates
the missing condition and forces the code to ignore the consequences, often creating an exploitable state,
a (PV) flaw. The IBM PSW flaw of Section 3.4.7 is such an example. The IBM 360 introduced the
Program Status Word (PSW) which contained a status condition code for those machine instructions
which have conditional execution modes. Many programmers ignore the PSW status code and assume
the execution result of the instruction. This is poor coding practice, but a surprisingly frequent occurrence
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[BULL91]. Often the programmer believes prior checks filter the conditions prior to the instruction
execution and that the data can not cause the unanticipated condition, thus ignoring the condition code.
The penetrator must find an opportunity to reset the parameters after the filter checks, but before the
conditional code execution. Time-Of-Check-To-Time-Of-Use (TOCTTOU) attacks are exactly what's
needed for penetration.

A TOCTTOU flaw is like a dangling participle grammatical flaw in English; the check code is distant
from the use code, enabling intervening code to change the tested parameters and cause the use code to
take incorrect, policy-violating actions, a (PV) flaw. The attack is a form of sleight of hand. The
penetrator sets up a perfectly innocent and correct program, possibly an existing application program, and
through multi-tasking or multi-processing, has another program modify the parameters during the interval
between check and use. The interval may be small, which requires careful timing of the attack. The flaw
is both an implicit memory sharing error and a process synchronization problem. The solution is not to
place system parameters in user memory, and/or prohibit interruptibility of "critical region" code
[LIND75, MCPH74, PHIL73].  

Read-before-Write flaws are residue control flaws.  Beginning with TCSEC C2 class systems, all reused
objects must be cleaned before reuse. This is required as a countermeasure to the inadequate residue
control in earlier systems. However, the flaw persists in modern dress.  When disk files are deleted, only
the name in the file catalog is erased. The data records are added to free storage for later allocation. To
increase performance, these used records are cleared on reallocation, (if at all), not on de-allocation. That
means the data records contain residue of possibly sensitive material. If the file memory is allocated and
read before data is written, the residue is accessible. A policy of write-before-read counters this flaw, but
such policy may not exist, or be poorly implemented. This flaw also appears with main memory allocation
and garbage collection schemes. In one example, the relevant alphabetical password records were read
into memory from the disk file for the login password compare. After the compare the memory was left
unchanged. Using other attacks, such as the array-bounds overflow described above, that residue memory
could be read and passwords scavenged. By carefully stepping through the alphabet, the complete
password file could be recreated, a (TC) flaw [LIND76].

4.3.4 Planting Bogus Code

The most virulent attacks are those created by the penetrator by inserting bogus code into the TCB, a (TC)
flaw. Bogus code includes all forms of unauthorized software, Trojan Horse, Trap Door, Virus, Bombs,
and Worms. Fundamentally, flaws that admit bogus code are flaws in the configuration control of the
TCB. The flaw may occur any time throughout the life cycle of the TCB. When development tools are
uncontrolled, bogus code can be imbedded in the tools and then into the TCB. Ken Thompson's ACM
Turing Lecture aptly documented such an attack [THOM84]. But there are easier methods; planting
bogus code in the run-time package of the most popular compiler and/or editor.  Recent attacks on the
Internet were exploitations of poor configuration control. Known flaws in UNIX were not fixed with the
free vendor patches. The hacker used the flaws to obtain unauthorized access [SPAF89].

Among the more colorful attacks against human frailty in controlling bogus code, is the Santa Claus
attack. It is a classic example of an unauthorized code import, achieved by spoofing the human operator
of a secure system. A penetrator prepared an attractive program for the computer operator, who always
ran with system privileges. The program printed a picture on the high-speed printer of Santa and his
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reindeer. The kind you always see posted at Christmas in and about the computer facility. However, there
was a Trojan Horse mixed in with Dancer, Prancer, and friends that modified the operating system and
allowed undetected access for the interloper. Before you belittle the computer operator's folly, consider
your own use of "freeware" programs down-loaded from your favorite bulletin board. There are as many
user and operator spoofs as there are gullible people looking for "gain without pain." Eternal vigilance
is the price of freedom from spoof attacks. Also, improved role-authorization controls can limit the
damage propagation of such attacks on human foibles.
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5.

5. NEW FRONTIERS IN PENETRATION TESTING  

This guideline concludes by speculating on future directions of penetration testing. The assumption is:
the battle between the TCB developer/operator and the hacker will continue unabated. Better legal
protection for users will always trail technology, and the technology will improve for both antagonists.
It wil l be continuous digital electronic warfare between security measures, hacker attacks, user counter
measures, and security counter-counter measures; perpetual offense against defense.

The defense, developers of TCBs, are using better methods of designing and implementing trusted
systems. Lessons are being learned from past penetrations, both tests and real attacks. The generic flaws
are leading to better understanding of security policy for confidentiality, integrity, and service availability,
and of the confinement of overt and covert channels when sharing common mechanisms in trusted
systems. This understanding is being captured in improved machine architectures with segregated
privilege domains or protection rings to reinforce security perimeters and boundary crossings. Hardware
that supports safe and rapid context switching and object virtualization. Cryptography is playing a larger
role in confidentiality, integrity, and authentication controls. Computers are getting faster and cheaper so
that security mechanisms will be hardware-rich and not be performance  limiting in secure solutions.
Software is getting better in quality, tools, development environments, testing standards, and formalism.

5.1 Automated Aids

Earlier, in the infancy of penetration testing, it was believed that flaws would fall into recognizable
patterns, and tools could be built to seek out these generic pattern during penetration testing [ABBO76,
CARL75, HOLL74, TRAT76]. Unfortunately, the large number of different processors, operating
systems, and programming languages used to build TCBs, with their different syntax and semantics made
it difficult and impractical to apply such pattern-matching tools to penetration testing.  Considerable cost
is required to port or re-implement the tools for each new environment and different programming
language. Also, the flaw patterns tended to be system specific. 

As modern secure systems focus on a few operating system standards, e.g., UNIX, MS-DOS, etc., fewer
programming languages, e.g., Ada and C, and more mature Expert Systems become available, future
penetration testing tool initiatives to capture flaw patterns may be more successful. A few specific
examples of this trend are beginning to appear.

5.1.1 Virus Antigens 
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A variety of commercially available anti-virus products recognize telltale patterns on disks prior to main
memory loading. These programs contain proprietary algorithms that recognize the signatures of dozens
of the viruses that have plagued the industry for MS-DOS, Macintosh, UNIX, and other OS. 

5.1.2 CERT Tools

Defense Advanced Research Projects Agency (DARPA) set up the Computer Emergency Response Team
(CERT) following the release of the Internet Worm attack of November 1988, with the mission to monitor
break-in attempts, and send out security alerts to the internet community. As a clearinghouse of
information, it periodically releases security tools for defensive use, which, however, have penetration
testing value as well. Two such tools are examples of progress, COPS and CRACK [FARM90,
MUFF4a].  COPS is a collection of short shell files and C code that test for known weaknesses in UNIX
file systems. CRACK is a password guessing program that contains a collection of cracking algorithms
and probable password. It generates candidate passwords, encrypts them per UNIX login and tries to
match them in the UNIX password file. Given the password file, it runs in background for a week or so
producing a successful hit list.   

5.1.3 Intrusion Detection 

Considerable research interest has produced a number of prototype intrusion detection tools: Haystack,
NIDX, DIDS, IDES, and ISOA [SMAHA88, BAUER88, DIAS91, LUNT92, WINK92]. These analytic
tools monitor the TCB's audit records for patterns of abnormal behavior, and flag suspicious conditions
to the Security Officer. The intrusion detection model "is based on the hypothesis that exploitation of a
system's vulnerabilities involves abnormal use of the system; therefore, security violations could be
detected from abnormal patterns of system usage" [DENN86].  Key to the success of these tools is their
ability to discriminate between intrusions and legitimate behavior -- the classical Type 1 (false acceptance
of an intrusion) versus Type 2 (false alarm for legitimate user) error tradeoff.  Expert Systems technology
is applied to build heuristic rules of statistically abnormal behavior. Intrusion Detection is so new there
is little empirical data on its operational use or success.

5.1.4 Specification Analysis

Formal specs (FTLS) are produced for A1 system as part of their assurance evidence. For these systems
a number of interesting tools exist for flaw analysis of the FTLS.  Foremost of these tools are the theorem
provers, that prove the specifications correct according to their formal policy model [KEMM86]. Failed
proofs may indicate potential flaws. (See Section 5.2 for more details.) 

Flow analyzers, such as the Unisys Ina Flo or the Mitre Flow Table Generator are tools used on the FTLS
to automatically generate lists of potential unauthorized information flows between state variables
[ECKM87, KRAM83].  The flow tool automatically analyzes the FTLS states, transforms, and initial
conditions and generates all conditions of information flow that lead to overt and covert write-down
channels, and potential flaws. Some tools can filter the potential flows against a user-supplied security
policy to eliminate all valid flows from those more suspicious.

Most novel are FTLS symbolic execution tools such as  Ina Test and Ina Go [ECKM85, WHEE92]. These
tools interpret the formal specifications under various initial conditions controlled by the tool user, in a
manner similar to a language interpreter. The resulting values of state variables can be observed and
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compared against theory (e.g., exit assertions) and expectations. Deviations may be flaws. These tools
are novel forms of rapid prototyping of security behavior directly from the FTLS. 

5.2 Formal Methods Of Penetration Testing

Formal methods employ rigorous mathematical specifications of the TCB design, assumptions, initial
conditions, and correctness criteria, the FTLS. Formal tools take these specifications and generate
correctness theorems and proofs of the theorems and the design they portray. It is hoped that these formal
methods can achieve similar success at the level of code proofs. A new form of penetration analysis is in
progress with new TCB designs -- rigorous formal models of the TCB. These models describe the TCB
behavior as state machines, state transition rules, security invariants, initial conditions and theorems that
must be proven. Penetration analysis is almost inseparable from the formal design process, producing
conjectures of flaws with the model and trying to prove them as theorems. This is a rigorous extension
of the FHM. If successful, the correctness proof versus flaw conjecture proof becomes part of the design
process, and uncovers problems early in the design, enabling iterative redesign, unlike FHM which often
comes too late in the development cycle to permit more than hack-and-patch. 

Recent work by Gupta and Gligor suggest a theory of penetration-resistant systems. Their  method claims
to be "a systematic approach to penetration analysis, enables the verification of penetration-resistance
properties, and is amenable to automation" [GUPTA91, GUPTA92]. They specify a formal set of design
properties that characterize resistance to penetration in the same framework used to specify the security
policy enforcement model -- a set of design properties, a set of machine states, state invariants, and a set
of rules for analysis of penetration vulnerability. Five penetration-resistance properties are described:

(1) System isolation (tamperproofness).
(2) System noncircumventability (no bypass).
(3) Consistency of system global variables and objects.
(4) Timing consistency of condition (validation) checks.
(5) Elimination of undesirable system/user dependencies.

Gupta and Gligor contend system flaws "are caused by incorrect implementation of the penetration-
resistance properties [that] can be identified in system (e.g., TCB) source code as patterns of
incorrect/absent validation-check statements or integrated flows that violate the intended design or code
specifications."  They further illustrate how the model can be used to implement automated tools for
penetration analysis. They describe an Automated Penetration Analysis (APA) tool and its experiments
on Secure XENIX source code. Early  results from this work indicate that penetration resistance depends
on many properties beyond the Reference Monitor, including the development and programming
environment, that is characterize as the Evidence Implication Chain in Section 3.1. Though limited only
to software analysis of attacks on the TCB from untrusted user code, and leaving significant other system
avenues for attack, the work may pave the way for new approaches to building and testing trusted systems
and tip the balance in favor of the "good guys."   

5.3 Open Issues In Penetration Testing

This section discusses unresolved management and policy issues affecting penetration testing. 
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5.3.1 Penetration Testing Contracting

Vendors should be encouraged to support their security claims with strong security evidence. Because
of the open-ended nature of penetration testing, fixed-price contracts are not appropriate when vendors
are expected to conduct penetration testing as a means of self-assessment. Penetration testing is an open
ended effort without a completion spec, as the prior material here attests. The effort is over when an
agreed criteria is met. A fixed-price level of effort, or cost-plus contract is a more appropriate vehicle for
penetration testing.

5.3.2 NVLAP Penetration Testing

The NIST National Voluntary Laboratory Accreditation Program (NVLAP) recommends that third-party
laboratories test network protocols. Possibly such an approach can be applied to security accreditation
(including penetration testing) as well. Mitre, Aerospace, AF Cryptologic Support Center, NSA already
perform similar functions, but not on a commercial basis. The new NIST Federal Criteria divorce security
functionality from security assurance. That policy could give NVLAP penetration testing groups
responsibility to evaluate vendor secure products. The NVLAP program is quite new; its future success
can set the precedent for third-party security evaluation labs. 

5.3.3 Penetration Testing and Composibility

A significant open question is: How are evaluators to judge the security of a system composed of
individually evaluated component products? Unlike the TNI requirements for a top-down design, the
composed system is built bottom-up, and interface specifications will most likely not exist. The TNI
composition rules will not apply.  For a composed system above B1, each of its components will be B2
or better and will, therefore, have been penetration tested. The ensemble will need a new, system-level
penetration test. The composibility controversy is beyond the scope of this guideline, however, FHM is
applicable to such composed systems and may be part of the controversy's resolution.   

5.3.4 Penetration Testing In Open System Environments

Penetration of networks is today an academic "sport." There is no question that the FHM is applicable and
effective. The difficulty is assigning responsibility for fixing flaws when the network is a heterogeneous
collection of evaluated products from different vendors. An integrated network, following the TNI or TDI,
is not at issue since the responsibility for flaws falls to the integration contractor and there is some
guidance for network testing [NCSC88b]. Again, it is beyond the scope of this guideline to establish
policy for rating heterogeneous networks, however, the holistic nature of penetration testing makes it
among the best methods available for such evaluations. 

5.3.5 Penetration Testing Of Trusted Applications
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The trusted application must follow the TCSEC TDI to be evaluated. That guideline defines the evidence
necessary for evaluation, including penetration testing. Penetration testing must be performed on the OS,
the application, and the combined system, the latter two efforts fall to the application vendor. The TDI
is new and the secure DBMS vendors are just entering the high assurance arena of penetration testing.

5.3.6 Penetration Testing For Ratings Maintenance (RAMP)

RAMP is defined for lower rated systems (below B2) because they have few development assurance
requirements [NCSC89]. High rated systems currently have no RAMP policy; the vendor must reevaluate
new releases of the TCB. Penetration testing can be a significant factor in reducing cost of reevaluation,
by focusing the penetration testing to those evidence products changed by the new release. It is the
Evidence Implication Chain that is being confirmed by FHM, and if items can be demonstrated to be
unchanged, considerable simplification of the penetration testing should be achieved. This thesis has been
tested successfully on the B2 evaluation of trusted XENIX [MCAU92].

5.3.7 Penetration Testing Of Other Policies

Security is policy specific, but the FHM is not. It is based on the Evidence Implication Chain, where
policy comes early in the evidence chain. Integrity, availability, safety are new policies of interest for
which penetration testing is applicable. Unfortunately, these policies have no defined standard analogous
to the TCSEC, and therefore, they have no definition of evidence, no theoretical foundation comparable
to the Reference Monitor, and no evidence chain to examine for flaws. Once such theoretical
underpinnings exists, penetration testing will be a valid assurance method.
 

5.4 Applicability Of FHM To Other Harmonized Criteria

The TCSEC has spurred development of information technology (IT) security evaluation criteria in other
countries, particularly in Canada [CTCPEC92] and Europe [ITSEC91]. These have generated
competitive pressure for compatible alignment of  U. S. commercial security criteria, i., e., "harmonized
criteria" as reflected in the draft Federal Criteria [FC92] published by NIST and NSA. Unlike the
integrated ratings of the TCSEC digraphs, these newer criteria have split the criteria into separate
functionality and trust requirements; these are further sub-divided in ways particular to each national
criteria. Profiles can then be defined as specific collections of functionality and trust requirements. 

It has been questioned whether penetration testing has meaning for a Target of Evaluation (TOE) based
on these newer criteria. The question has importance for this guideline because of the shift of U.S. Federal
Criteria to unbundle functionality from assurance. For most of the reasons expressed earlier in this
guideline, penetration testing will be required for high assurance evaluations even under these new
criteria. The applicability  of FHM to the harmonized criteria is discussed here as it will be applied in the
1990's.

5.4.1 Canadian Evaluation Criteria

The Canadian Trusted Computer Product Evaluation Criteria (CTCPEC) defines a Security Functional
Profile as an open-ended set, an n-tuple, that can describe an infinite variety of product security
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requirements. It is at the opposite extreme from the TCSEC and avoids "interpretations" for network,
database, or other applications. The CTCPEC divides security functionality into four groups:
Confidentiality, Integrity, Availability, and Accountability requirements. Each of these are further divided,
e.g., covert channels (CC), MAC (CM), DAC (CD), and reuse (CR); discretionary integrity (ID),
mandatory (IM),  physical (IP), rollback (IR), separation of duties (IS), and self test (IT); containment
(AC), robustness (AR), and recovery (AY); audit (WA), I&A (WI), and trusted path (WT). There are
various degrees of increasing strength for each functional requirement division, e.g., CC-3, WA-4.
Defined profiles exist for TCSEC digraphs. For example:

Profile 3 = B2 = [CC1, CD2, CM3, CR1, ID/IM1, IS2, IT1, WA1, WI1, WT1]

Eight trust levels T0 - T7 parallel the TCSEC:  T0 = D, T1 to T5 = C1 to B3,  and T7 = A1. T6 is
between B3 and A1, using "semi-formal" detail design methods.  Penetration testing is a clear
requirement for trust levels T4 to T7. "Flaw hypothesis testing" is required at T1 to T3. Penetration
testing is noted through out the trust requirements, but there is no description of what or how it is done.
The CTCPEC follows very closely the ideas, definitions, and concepts of the TCSEC and is exactly what
the TCSEC would be if the digraphs were broken into their functional and trust components.  It is
reasonable, therefore,  to conclude that a process similar to that acceptable for TCSEC evaluations -- this
guideline -- is germane to the CTCPEC.

5.4.2 European Evaluation Criteria 

A TOE of the European Information Technology Security Evaluation Criteria (ITSEC)  is either a security
product or a system. Its penetration testing is therefore comparable in scope to penetration testing in
accordance with the TCSEC. However, a TOE's evaluation criteria consists of a 2-tuple, (F, E); one of
ten security functionality classes, F, and one of six independent evaluation levels, E. To match the TCSEC
classes of FHM  interest,  we  have  the  following 2-tuples: (F4, E4), (F5, E5), (F5, E6), corresponding
to B2, B3, A1, respectively. The first five functional classes of the ITSEC, F1 ... F5 match the six
functional classes of the TCSEC, C1 ... A1, with F5 functionality the same for B3 and A1.

The six ITSEC evaluation classes are applied to the TOE Development Process (DP), Development
Environment (DE), and Operational Environment (OE), each of which is further divided as follows:

DP: Requirements, Architectural Design, Detailed Design, Implementation

DE: Configuration Control, Programming Languages and Compilers, 
Developer Security

OE: Delivery and Configuration, Setup and Operation

The ITSEC is so new there is limited practical experience to draw from in looking at the applicability of
FHM, so we must look at the published companion document, the Information Technology Security
Evaluation Manual (ITSEM) [ITSEM92]. The ITSEM builds on the ITSEC describing how a TOE will
be evaluated according to the ITSEC to provide a basis for "mutual recognition" of evaluation certificates
by the participating nations. It defines measures for achieving mutual recognition of test results --
reproducibility,  repeatability, objectivity, and impartiality. It also describes organizational rules and
procedures for the evaluation process. It defines the Information Technology Security Evaluation Facility
(ITSEF), the independent laboratory that performs the evaluations -- similar to the NVLAP idea noted
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in Section 5.3.2., and the Certification Body (CB), which assures impartial and proper evaluation --
similar to the TCSEC DAA -- and issues the certificate of compliance with the security standards of the
ITSEC.  
Penetration testing is widely noted in the ITSEM and follows TCSEC practice quite closely.  Penetration
testing "... is based upon an ITSEC interpretation of the SDC Flaw Hypothesis Methodology ..."  ITSEM
breaks the four stages of FHM into five sequential test sub-activities: prepare, identify, specify, execute,
and follow up. These follow quite closely this guideline, which  is directly applicable as written.  

Testing for errors and vulnerabilities is required by the ITSEC even at evaluation class E1, retesting of
corrected flaws is required at E3, independent vulnerability analysis is needed at E4, and all these
requirements are cumulative with higher evaluation classes. These test requirements are quite similar to
those addressed by the FHM described in this guideline.

Assurance of a TOE is divided in the ITSEC into correctness and effectiveness. Correctness is based on
the six evaluation classes, E1-E6. Effectiveness of a TOE involves a number of considerations: the
suitability of the security functionality for the proposed environment, analogous to the TCSEC
environment guidelines [CSC85]; whether the functionality yields a sound security architecture; ease of
use of security functions; assessment of the security vulnerabilities during development and operation;
and the strength of the security mechanisms to resist attack. All these items are "Generators" in the FHM,
(see Section 3.4).

The FHM depends on discovering failures in the Evidence Implication Chain, starting with a security
policy, (see Section 3.1). The application of FHM to a TOE would require a similar procedure. A TOE
has a hierarchy of security policies: a System Security Policy (SSP), a System Electronic Information
Security Policy (SEISP), and a Security Policy Model (SPM), corresponding to security objectives,
detailed security enforcement mechanisms, and semi-formal policy model, respectively. These policies
are tied to the functional classes and form the basis for the correctness criteria for testing. Together with
the evaluation classes, an Evidence Implication Chain is formed for a specific TOE, and FHM can be
successfully applied.

5.4.3 Federal Evaluation Criteria

Protection profiles are defined by the Federal Criteria for Information Technology Security (FC) as "...
an abstract specification of the security aspects of a needed information technology product." It consists
of five elements: Description, Rationale, Functional Requirements, Development Assurance
Requirements, and Evaluation Assurance Requirements. Like the CTCPEC and the ITSEC, prepackaged
profiles can be defined for the TCSEC digraphs.  The FC defines the functional and trust sub-elements
in a manner similar to the other criteria. These definitions also appear consistent (harmonized) with the
CTCPEC and ITSEC.

Penetration testing in the FC is graded into four levels based on the scope, precision, coverage, and
strength of the analysis methods used.  PA-1 Basic Penetration Testing, is limited to unprivileged users,
application program interfaces to the TCB, public documentation, and examples of past flaws. PA-2 Flaw
Hypothesis Testing, extends PA-1 with design and implementation documents, source code,
specifications, and tests based on the FHM. PA-3 Penetration Analysis augments PA-2 with penetration-
resistance verification methods similar to those described in  Section 5.2. PA-4 Analysis of Penetration
Resistance, augments PA-3 with formal verification proofs of the TCB penetration resistant properties
using theorem proving tools as described in Sections 5.1.4 and 5.2. Evidence from these components are
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the plans, procedures, and results of the tests and analyses. Again, as with the other criteria, FHM is
applicable to the FC. 

In summary, FHM should be equally applicable to all the national evaluation criteria and the material of
this guideline is germane.
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6.

6. APPENDICES

Sections 6.1 through 6.4 are the following four appendices:

o Abbreviations And Acronyms
o Flaw Hypothesis Sheets (FHS)
o Model Penetration Testing Tasking
o Model WBS Schedule, Milestones, And Labor 

The appendices are intended to help evaluators and their management with procedures and planning.

6.1 Abbreviations And Acronyms

The following abbreviations and acronyms are used in this guideline:

ACM Association for Computing Machinery
AF Air Force
AI Artificial Intelligence
APA Automatic Penetration Analysis
A1, B3, B2 Higher evaluation classes in the Orange Book (TCSEC) in decreasing security

strength
B1, C2, C1 Lower TCSEC evaluation classes in decreasing security strength
CCA Covert Channel Analysis
CDR Critical Design Review, DOD-STD-2167A
CERT Computer Emergency Response Team, DARPA initiative
CIPSO Commercial Internet Protocol Security Option, LAN security label format
CMP Configuration Management Plan, TCSEC
COMPUSEC Computer Security 
CONOPS Concept of Operations
CPIF Cost Plus Incentive Fee type contract
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CSC Computer Software Component, DOD-STD-2167A
CSCI Computer Software Control Item, DOD-STD-2167A
CSU Computer Software Unit, DOD-STD-2167A
CTCPEC Canadian Trusted Computer Product Evaluation Criteria
DAA Designated Approving Authority, TCSEC
DAC Discretionary Access Control, TCSEC
DARPA Defense Advanced Research Project Agency
DBMS Data Base Management System
DDN Defense Data Network
DIDS Distributed Intrusion Detection System
DOD Department Of Defense
DOS, DS Denial Of Service flaw, FHM
DTLS Detailed Top Level Specification, TCSEC
EBP Evaluation By Parts, TDI
EPL Evaluated Product List, NCSC
FC Federal Criteria for Information Technology Security
FCA Functional Configuration Audit, DOD-STD-2167A
FHM Flaw Hypothesis Methodology
FHS Flaw Hypothesis Sheet
FP Fixed Price type contract
FQT Final Qualification Test, DOD-STD-2167A
FTLS Formal Top Level Specification, TCSEC
HDM Hierarchical Development Methodology, also a formal specification language
HH,HM ... LL FHS priorities from High-High, High-Medium to Low-Low
ICD Interface Control Document, a part of a system specification
IDES Intrusion Detection Expert System
ID, IDs User or component Identification
I&A Identification and Authentication
Ina Flo Ina Jo flow analysis tool used in CCA of FTLS
Ina Jo A formal specification language for FTLS
Ina TestIna Jo symbolic execution tool for rapid prototyping FTLS
IN Installation Flaw
IP Internet Protocol
ISOA Information Security Officer Assistant
ITSEC Information Technology Security Evaluation Criteria, 

European counterpart to the TCSEC
ITSEF Information Technology Security Evaluation Facility for ITSEC
ITSEM Information Technology Security Evaluation Manual for ITSEC
JCL Job Control Language, IBM computers
MAC Mandatory Access Control, TCSEC
MCP Master Control Program, e.g., Operating System
MS-DOS MicroSoft Disk Operating System for PCs.
NCSC National Computer Security Center, NSA
NIDX Network Intrusion Detection eXpert system
NIST National Institute of Science and Technology, 

formerly the National Bureau of Standards (NBS)
NRL Naval Research Laboratory
NTCB Network Trusted Computing Base, TNI
NVLAP National Voluntary Laboratory Accreditation Program, NIST
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ODC Other Direct Costs financial category in contracting
O&S Operation and Support documents, DOD-STD-2167A
PCA Physical Configuration Audit, DOD-STD-2167A
PDR Preliminary Design Review, DOD-STD-2167A
PQT Preliminary Qualification Test, DOD-STD-2167A
PSW Program Status Word, IBM computers
PV Policy Violation flaw, FHM
RAMP Ratings And Maintenance Program, NCSC
RIPSO Revised Internet Protocol Security Option, DDN security label format
RVM Reference Validation Mechanism, TCSEC
SEE Software Engineering Environment
SDD Software Design Document, DOD-STD-2167A
SDI Strategic Defense Initiative
SDIO Strategic Defense Initiative Project Office
SDP Software Development Plan, DOD-STD-2167A
SDR System Design Review, DOD-STD-2167A
SEISP System Electronic Information Security Policy, ITSEC
SFUG Security Features Users Guide, TCSEC
SPM Security Policy Model, ITSEC
SPS Software Product Specification, DOD-STD-2167A
SRR System Requirements Review, DOD-STD-2167A
SRS Software Requirements Specification, DOD-STD-2167A
SSP System Security Policy, ITSEC
SSS System/Subsystem Specification, DOD-STD-2167A
STD Software Test Description, DOD-STD-2167A
STR Software Test Result, DOD-STD-2167A
TC Total Control flaw, FHM
TCB Trusted Computing Base, TCSEC
TCSEC Trusted Computer System Security Evaluation Criteria, NCSC
TDI Trusted Database Management System Interpretation of the TCSEC
TFM Trusted Facility Manual, TCSEC
TNI Trusted Network Interpretation of the TCSEC
TOCTTOU Time-Of-Check-To-Time-Of-Use flaw
TOE Target Of Evaluation, ITSEC
TRR Test Readiness Review, DOD-STD-2167A
WBS Work Breakdown Structure -- project tasks, labor, schedule
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6.2 Flaw Hypothesis Sheets (FHS)

FHM candidate flaws are documented on Flaw Hypothesis Sheets (FHS), one page (record)
per flaw. A FHS is intended to be concise and easy to complete as the ideas surface during the penetration
testing. The FHS contains seven fields, all text strings.

The first FHS field is PROBLEM ID, a flaw name for identification with the syntax LLLLDD, where "L"
= letter, and "D" = digit. We have found it convenient for the letters to encode the evidence item, e.g.,
"FS" = FTLS, and the initials of the evaluator assigned, with the digits sequencing each flaw candidate
per system area or module. Typically, there can be hundreds of flaws, but seldom more that a few per
area.
 
Field 2 is PRIORITY, a two-part ranking of the FHS: 

(1) An assessment of the probability of the flaw being confirmed. 
(2) The damage impact of the flaw on the protection of the system, if realized.  

Both probabilities are measured on a scale of High, Medium, or Low. The combined assessment of HH,
HM, HL, MH, ... , LL yields an overall scale of nine for ranking FHS. The ranking is valuable in
allocating resources during the Flaw Confirmation stage of
penetration testing. 

Field 3 is WORK FACTOR, a H, M, or L estimate of the work required to demonstrate a flaw. High
work-factor flaws, e.g., cracking encryption codes, are given lower consideration for High effort even if
the flaw is ranked HH. 

Field 4 is REFERENCE SOURCE, the evidence inventory name or number in the configuration
management system from which the FHS was generated. This field's syntax is system specific.

Field 5, VULNERABILITY, is an English description in detail of the potential flaw, its location in the
evidence, the environment conditions, the weakness perceived, a characterization of the flaw taxonomy,
e.g., residue problem. It should be brief, but sufficient for another evaluator to understand and pursue if
the FHS is reassigned. The ten most productive generators (listed in Section 3.4). 

Field 6 describes briefly the ATTACK STRATEGY for demonstrating the flaw and for exploiting it if
confirmed. Sections 3.4 and 4.3 are useful taxonomies for description. Sufficient detail of the attack
should be noted to aid another evaluator, e.g., "trolling for passwords in the print spool file."  Suggestions
should be noted of closely related attacks, or a family of attacks due to a design, implementation, or
operational flaw, e.g., "coding error in macro 26."  The FHS attack strategy listed is one suggested
approach to confirming the flaw. The evaluator has the last word, and may find alternative and better
approaches. It is the result that counts. The approaches tried should be posted in the FHS after the fact
so they are not repeated by others.
 
The last field, Field 7 is ASSESSMENT, which documents the approach(es) tried and the results
achieved -- confirmed, not confirmed, partial success, not tried. The assessment should qualify results
obtained from: live test, observation, or Gedanken experiment. If there is a formal test report, the result
should reference the appropriate sections.
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The total set of FHSs becomes the flaw database that guides and documents the penetration testing.  The
FHSs can be mechanized with a word processor or a DBMS. Most penetration tests adapt the FHS fields
to their liking and available tools. Figure 6-1 is an example FHS.

PROBLEM ID: SOCW-1

PRIORITY: HH

WORK FACTOR: L

REFERENCE SOURCE:TFM

VULNERABILITY: Training Wheels
Operator ID = SO (Security Officer)
Password may be preset from vendor.

ATTACK STRATEGY: Try typical passwords
Password    = SO

= vendor's name

ASSESSMENT: Confirmed
Password     = ADMIN

Tried  various passwords and obtained root privilege.

Figure 6-1.        Example Flaw Hypothesis Sheet (FHS)

6.3 Model Penetration Testing Tasking 

Table 6-1 gives a model two-level Work Breakdown Structure (WBS) of tasks for a typical FHM
penetration test. Adapt the model as necessary to the needs of each penetration testing effort.  Most tasks
are described in the main text; however, a few need some expansion here.
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Table 6-1.        Model FHM WBS

WBS Tasks
1. Management

1.1 Penetration Plan Development
1.2 Team Selection and Management
1.3 Lab and Facilities Management
1.4 Program Control & Contracts
1.5 CM/DM - Evidence, Tests, Results (FHS Database)
1.6 Customer/Vendor Coordination-Requirements/Materials, Progress Briefs
1.7 Scheduling & Progress Status

2. Training & Preparation
2.1 FHM & Professional (Ethical) Rules of Conduct
2.2 Penetration Testing Past History
2.3 Target Of Evaluation (TOE) System Architecture Review
2.4 TOE TCSEC Evidence Walk Through
2.5 Tools Familiarity - TOE & FHM 

3. Generation
3.1 Initial Brainstorming Sessions
3.2 Dependency Graph Generation
3.3 Confirmation Strategies & Staff Assignments
3.4 Building and Ranking FHS Database

4. Confirmation
4.1 Daily Results Status Meetings - Replanning Priorities
4.2 Gedanken Experiments
4.3 Live Test Planning - Procedures, Tools, TOE Configuration
4.4 Live Testing
4.5 FHS Database Updated - Results & New FHS

5. Generalization
5.1 Weekly Results Analysis Brainstorming Session
5.2 Confirmed Flaw Induction Analysis - Understanding Generic Cause
5.3 FHS Database Updated - Results & New FHS
5.4 Repeat Generation Stage for New FHS and Insights

6. Elimination
6.1 Confirmed Flaws Documented - Expand FHS
6.2 Customer/Vendor Flaw Presentation
6.3 Test Customer/Vendor Flaw Fix
6.4 Regression Testing After All Customer Fixes

7. Wrap Up
7.1 Final Report Prepared - Results, Residual Flaws
7.2 CM/DM Material Properly Disposed Of - Return, Destroy, Store
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6.3.1 Management

If not part of a larger program, many penetration testing support tasks must be performed by a
management task. The penetration testing will require access to vendor hardware/software, and team
utilization of the TOE lab and facilities. Configuration Management/Data Management (CM/DM) is
required for all TCB evidence, lab equipment,  software, penetration testing tools, FHS database, and test
results.  The team must assure protection of all proprietary and classified items.  Work is heaviest at the
start and finish of the effort to plan, initiate, finalize, and complete the penetration testing. 

6.3.2 Training

This could be part of Management; however, it is treated separately here to make visible the extent of the
training needed on the TOE. For an experienced team, FHM, tools, and history training are not required.
Training is an early scheduled effort to establish a common knowledge base for the team.

6.3.3 Elimination

If penetration testing continues long enough for earlier flaws to be repaired by the customer/vendor, these
fixes need to be retested. However, the fixed system should be viewed as a new release of the
system/product, thereby requiring a regression test of all prior confirmed flaws, and new tests to assure
that the fixes did not introduce new flaws. Regression testing is not covered in the Figure 6.2 WBS labor
estimates, only fix retesting. Regression testing is not included because the vendor will usually take longer
to fix flaws in a new release than the time allotted for the whole penetration test, and because regression
testing a new release is essentially a whole new penetration test.

6.3.4 Wrap Up

The final stage is preparing the final report for the DAA or designated recipient, and disposing in a
sensitive manner, of all the CM/DM materials collected.

6.4 Model WBS Schedule, Milestones, And Labor

Figure 6-2 presents a model WBS, labor-loaded by person-months (PM) per month for the top-level
(level 1) penetration testing tasks. Labor-loadings also show the task scheduling. Management effort is
spent throughout the testing, with greater effort at the start and finish.  CM/DM is performed throughout
the testing. Training is up front for some of the team. Generation makes a big push early, but sees effort
over much of the performance period since ideas are triggered by Generalization and other tasks.
Confirmation is throughout the effort flowing one month behind Generation. It is 33% of the total effort.
Generalization begins about the middle of the effort when confirmed flaws begin to accumulate, and drops
off toward the end. Elimination is a vendor task. The effort shown is for the team to coordinate and
prepare flaw descriptions for the vendor, and to retest any fixed flaws.  Wrap up is also a management
task, but separated here because it deals with technical matters, preparing the final report and disposing
of all sensitive materials collected in CM/DM during the effort. Overall, management-related tasks --
Management, Training, and Wrap Up -- are about 33% of the total effort. If there exists a permanent
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penetration testing organization performing multiple and concurrent penetration tests with experienced
folks, the management effort can be halved.  

WBS    Task                 Months                   Totals     
                      1   2    3    4    5    6        %    pm 
---------------------------------------------------------------
1.  Management        1 0.5  0.25 0.25  0.5  1.5   16.67%   4
2.  Training        1.5 0.5                         8.33%   2 
3.  Generation        1 1.5  0.5  0.5   0.5        16.67%   4
4.  Confirmation    0.5 1.5  1.75 2.25  1.5  0.5   33.33%   8
5.  Generalization           1    0.5   0.5         8.33%   2
6.  Elimination (*)          0.5  0.5   0.5  0.5    8.33%   2
7.  Wrap Up                             0.5  1.5    8.33%   2
---------------------------------------------------------------
    Totals          4   4    4    4     4    4    100.0%   24
     
* Vendor labor to fix not shown, only team coordination &       
  retests
      

Figure 6-2.        Model WBS Schedule And Labor-Loadings
                       (All labor shown is in person-months, pm) 
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